DOI QR코드

DOI QR Code

도로교통량 조사를 위한 12종 차종 분류 방법

Vehicle Type Classification Method for Road Traffic Surveys

  • 강미선 ;
  • 김찬호 ;
  • 김병근
  • Mi-Seon Kang (ETRI) ;
  • Chan-Ho Kim (Kyungpook National University) ;
  • Pyong-Kun Kim (ETRI)
  • 투고 : 2024.08.28
  • 심사 : 2024.09.24
  • 발행 : 2024.10.31

초록

This paper proposes a novel method for effectively classifying 12 vehicle types required for road traffic surveys by utilizing deep learning techniques. In particular, it focuses on the trailer vehicle types, classified as types 8 to 12, which have been challenging in previous research due to data scarcity. A zero-shot learning approach, Grounding DINO, is employed to extract key features that can distinguish these trailer types, addressing the data imbalance issue. This method enables accurate classification of the underrepresented vehicle types, leading to efficient classification across all 12 types. To the best of the authors' knowledge, this is the first attempt to classify 12 vehicle types required for road traffic surveys using publicly available video data.

키워드

과제정보

본 논문은 한국전자통신연구원 연구운영지원사업의 일환으로 수행되었음. [24ZD1120, 대경권 지역산업 기반 ICT 융합기술 고도화 지원사업]

참고문헌

  1. J. H. Park, B. G. Kim, M. S. Kang, "A Study on the Performance Improvement of Vehicle Types Classification," Proceedings of the Korean Institute of Communications and Information Sciences Conference, pp. 967-968, 2021.
  2. J. M. Johnson, T. M. Khoshgoftaar, "Survey on Deep Learning with Class Imbalance." Journal of Big Data, Vol. 6, No. 1, pp. 1-54, 2019.
  3. Y. T. Sohn, M. S. Do, Y. H. Yoon, "A Study on the Improvement of Vehicle Classification Criteria for Road Traffic Volume Survey," Journal of the Korean Society of Transportation, Vol. 19, No. 3, pp. 153-165, 2001.
  4. J. S. Oh, K. C. Jang, M. S. Kim, "Vehicle Classification Plan for Two-Axle Vehicles Using Vehicle Shape Data," Journal of Korean Intelligent Transport Systems Society, Vol. 10, No. 5, pp. 47-52, 2011.
  5. J. M. Kim, D. S. Oh. "A Study on Road Traffic Volume Survey Using Vehicle Specification DB." J. Korea Inst. Intell. Transp. Syst., Vol. 22, No. 2, 2023, pp. 93-104.
  6. J. Redmon, S. Divvala, R. Girshick, A. Farhadi, "You only Look Once: Unified, Real-time Object Detection." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 779-788, 2016.
  7. J. Redmon, A. Farhadi, "YOLO9000: Better, Faster, Stronger." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7263-7271, 2017.
  8. M. S. Kang, P. K. Kim, K. T. Lim, Y. Z. Cho, "Method for Obtaining Better Traffic Survey Data" Electronics, Vol. 10, No. 7, pp. 833, 2021.
  9. P. K. Kim, K. T. Lim, "Vehicle Type Classification Using Bagging and Convolutional Neural Network on Multi View Surveillance Image." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 41-46, 2017.
  10. S. Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, C. Li, J. Yang, H. Su, J. Zhu, L. Zhang, "Grounding DINO: Marrying DINO with Grounded Pre-training for Open-set Object Detection," arXiv preprint arXiv:2303.05499, 2023.
  11. http://www.road.re.kr/pds/request_info.asp
  12. Ministry of Land, Infrastructure and Transport, "Road Traffic Volume Survey Guidelines" [Effective April 1, 2023], Ministry of Land, Infrastructure and Transport Decree No. 362, March 24, 2023, partial revision.
  13. https://pytorch.org/
  14. https://pycaret.org/