References
- https://www.epa.gov/ghgemissions/understanding-global-warming-potentials.
- Jackson, R. B., Solomon, E. I., Canadell, J. G., Cargnello M. and Field, C. B., "Methane Removal and Atmospheric Restoration," Nat. Sustain., 2(6), 436-438(2019).
- Etminan, M., Myhre, G., Highwood, E. J. and Shine, K. P., "Radiative Forcing of Carbon Dioxide, Methane, and Nitrous Oxide: A Significant Revision of the Methane Radiative Forcing," Geophys. Res. Lett., 43, 12614-12623(2016).
- Jin, S. M., Lee, K.-Y. and Lee, D.-W., "Ozone-Induced Lean Methane Oxidation over Cobalt Ion-Exchanged BEA Catalyst under Dry Reaction Conditions," J. Ind. Eng. Chem., 112, 296-306(2022).
- Lee, S. W., Kim, E. J., Lee H. J. and Park, J. H., "Preparation of the Hollow Fiber Type Perovskite Catalyst for Methane Complete Oxidation," Korean Chem. Eng. Res., 56(3), 297-302(2018).
- Kim, S., Lee, J. Y., Cho, I., Lee, D.-W. and Lee, K.-Y., "Catalytic Combustion of Methane over AMnAl11O19(A=La, Sr, Ba) and CeO2/LaMnAl11O19," Korean Chem. Eng. Res., 49(5), 633-638(2011).
- Hui, K. S., Kwong, C. W. and Chao, C. Y. H., "Methane Emission Abatement by Pd-ion-exchanged zeolite 13X with Ozone," Energy. Environ. Sci., 3, 1092-1098(2010).
- Keenan, M., Nicole, J. and Poojary, D., "Ozone as an Enabler for Low Temperature Methane Control over a Current Production Fe-BEA Catalyst," Top. Catal., 62, 351-355(2019).
- Yasumura, S., Saita, K., Miyakage, T., Nagai, K., Kon, K., Toyao, T., Maeno, Z., Taketsugu, T. and Shimizu, K., "Designing Maingroup Catalysts for Low-temperature Methane Combustion by Ozone," Nat. Commun., 14, 3926:1-10(2023).
- Beznis, N. V., Weckhuysen, B. M. and Bitter J. H., "Partial Oxidation of Methane Over Co-ZSM-5: Tuning the Oxygenate Selectivity by Altering the Preparation Route," Catal. Lett., 136, 52-56(2010).
- Torimoto, M., Ogo, S., Hisai, Y., Nakano, N., Takahashi, A., Ma, Q., Seo, J. G., Tsuneki, H., Norby, T. and Sekine, Y., "Support Effects on Catalysis of Low Temperature Methane Steam Reforming," RSC Adv., 10, 26418-26424(2020).
- Lott, P. and Deutschmann, O., "Lean-Burn Natural Gas Engines: Challenges and Concepts for an Efficient Exhaust Gas Aftertreatment System," Emiss. Control Sci. Technol., 7, 1-6(2021).
- Kinnunen, N., Kinnunen, T. and Kallinen, K., "Improved Sulfur Resistance of Noble Metal Catalyst for Lean-Burn Natural Gas Applications," SAE Tech. Paper 2013-24-0155 (2013).
- Ungary, C., "A Sustainable Approach to the Conversion of Waste into Energy: Landfill Gas-to-Fuel Technology," Sustainability, 15(20), 14782:1-17(2023).
- Manheim, D. C., Yesiller, N. J. and Hanson, L., "Gas Emissions from Municipal Solid Waste Landfills: A Comprehensive Review and Analysis of Global Data," J. Indian Inst. Sci., 101, 625-657 (2021).
- Feilberg, A., Hansen, M. J., Liu, D. and Nyord, T., "Contribution of Livestock H2S to Total Sulfur Emissions in a Region with Intensive Animal Production," Nat. Commun., 1069, 1-7(2017).
- Kumar, S. N., Appari, S. and Kuncharam B. V. R., "Techniques for Overcoming Sulfur Poisoning of Catalyst Employed in Hydrocarbon Reforming," Catal. Surv. Asia, 25, 362-388(2021).
- Luo, J., Xu, H., Liang, X., Wu, S., Liu, Z., Tie, Y., Li, M. and Yang, D., "Research Progress on Selective Catalytic Reduction of NOx by NH3 over Copper Zeolite Catalysts at Low Temperature: Reaction Mechanism and Catalyst Deactivation," Res. Chem. Intermed., 49, 2321-2357(2023).