Acknowledgement
논문을 심사해주신 익명의 심사위원들께 감사드립니다. 이 연구는 한국지질자원연구원 기초연구사업 심층학습 기반 GH 저류층 분석모델 개발 사업(GP2021-010)의 지원을 받아 수행되었습니다.
References
- Agatonovic-Kustrin, S., Wu, V., Rades, T., Saville, D. and Tucker, I.G., 2000, Ranitidine hydrochloride X-ray assay using a neural network. Journal of Pharmaceutical and Biomedical Analysis 22, 985-992.
- Berndt, C., Bunz, S., Clayton, T., Mienert, J. and Saunders, M., 2004, Seismic character of bottom simulating reflectors: examples from the mid-Norwegian margin. Marine and Petroleum Geology 21, 723-733.
- Chen, C., Zhang, Y., Li, X., He, J., Gao, F. and Chen, Z., 2024, Investigations into methane hydrate formation, accumulation, and distribution in sediments with different contents of illite clay. Applied Energy 359.
- Kim, H.S., Riedel, M., Ryu, B.J., Kim, G.Y. and Bahk, J.J., 2013, Improving gas hydrate saturation estimates using P-wave velocity log data by incorporating XRD-data for detailed matrix-mineralogy definition. Marine and Petroleum Geology 47, 155-167.
- Kim, I.-S., Park, M.-H., Ryu, B.-J. and Yu, K.-M., 2006, Tephrostratigraphy and paleoenvironmental variation in late Quaternary core sediments of the southwestern Ulleung Basin, East Sea (Sea of Japan). The Island Arc 15, 178-186.
- Kvenvolden, K.A., 2002, Methane hydrate in the global organic carbon cycle. Terra Nova 14, 302-306.
- KIGAM, 2021, Gas Hydrate Exploration and Production Research, 26-62.
- KIGAM, 2022, Gas Hydrate Exploration and Production Research, 31-56.
- Lee, J., Byun, J., Kim, B. and Yoo, D.G., 2017, Delineation of gas hydrate reservoirs in the Ulleung Basin using unsupervised multi-attribute clustering without well log data. Journal of Natural Gas Science and Engineering 46, 326-337.
- Lee, J.H., Baek, Y.S., Ryu, B.J., Riedel, M. and Hyndman, R.D., 2005, A seismic survey to detect natural gas hydrate in the East Sea of Korea. Marine Geophysical Researches 26, 51-59.
- Lee, J.W., Park, W.B., Lee, J.H., Singh, S.P. and Sohn, K.S., 2020, A deep-learning technique for phase identification in multiphase inorganic compounds using synthetic XRD powder patterns. Nat Commun 11, 86.
- Lu, H. and Matsumoto, R., 2002, Preliminary experimental results of the stable P-T conditions of methane hydrate in a nannofossil-rich claystone column. GEOCHEMICAL JOURNAL 36, 21-30.
- Mi, F., He, Z., Cheng, L., Jiang, G. and Ning, F., 2023, Molecular dynamics simulation on methane hydrate formation in clay nanopores of edge surfaces. Applied Clay Science 243.
- Park, S.Y., Son, B.-K., Choi, J., Jin, H. and Lee, K., 2022, Application of machine learning to quantification of mineral composition on gas hydrate-bearing sediments, Ulleung Basin, Korea. Journal of Petroleum Science and Engineering 209.
- Park, W.B., Chung, J., Jung, J., Sohn, K., Singh, S.P., Pyo, M., Shin, N. and Sohn, K.S., 2017, Classification of crystal structure using a convolutional neural network. IUCrJ 4, 486-494.
- Ren, F., Ward, L., Williams, T., Laws, K.J., Wolverton, C., Hattrick-Simpers, J. and Mehta, A., 2018, Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments. Science Advances 4, eaaq1566.
- Ruppel, C.D. and Kessler, J.D., 2017, The interaction of climate change and methane hydrates. Reviews of Geophysics 55, 126-168.
- Ryu, B.-J., Collett, T.S., Riedel, M., Kim, G.Y., Chun, J.-H., Bahk, J.-J., Lee, J.Y., Kim, J.-H. and Yoo, D.-G., 2013, Scientific results of the Second Gas Hydrate Drilling Expedition in the Ulleung Basin (UBGH2). Marine and Petroleum Geology 47, 1-20.
- Schuetzke, J., Benedix, A., Mikut, R. and Reischl, M., 2021, Enhancing deep-learning training for phase identification in powder X-ray diffractograms. IUCrJ 8, 408-420.
- Schwalbach, J.R., Gordon, S.A., O'Brien, C.P., Lockman, D.F., Benmore, W.C., Huggins, C.A. and Sietronics 1996, SIROQUANT: A quantitative XRD software. Sietronics Pty Limited, Australia.
- Surdu, V.-A. and Gyorgy, R., 2023, X-ray Diffraction Data Analysis by Machine Learning Methods-A Review. Applied Sciences 13.
- Tatlier, M., 2011, Artificial neural network methods for the prediction of framework crystal structures of zeolites from XRD data. Neural Computing and Applications 20, 365-371.
- Torres, M.E., Trehu, A.M., Cespedes, N., Kastner, M., Wortmann, U.G., Kim, J.H., Long, P., Malinverno, A., Pohlman, J.W., Riedel, M. and Collett, T., 2008, Methane hydrate formation in turbidite sediments of northern Cascadia, IODP Expedition 311. Earth and Planetary Science Letters 271, 170-180.
- Uchida, T., Takeya, S., Chuvilin, E.M., Ohmura, R., Nagao, J., Yakushev, V.S., Istomin, V.A., Wang, H., Xie, Y., Li, D., Deng, H., Zhao, Y., Xin, M. and Lin, J., 2020, Rapid Identification of X-ray Diffraction Patterns Based on Very Limited Data by Interpretable Convolutional Neural Networks. J Chem Inf Model 60, 2004-2011.
- Zhang, Y., Li, X.-S., Wang, Y., Chen, Z.-Y. and Yan, K.-F., 2016, Decomposition conditions of methane hydrate in marine sediments from South China Sea. Fluid Phase Equilibria 413, 110-115.