DOI QR코드

DOI QR Code

First-principles Calculations of K-edge Absorption Spectra of Ca-bearing Minerals

Ca-함유 광물에 대한 제1원리 K-edge 흡수 스펙트럼 계산

  • Sanggeon Kim (Department of Geology, Kangwon National University) ;
  • Sangbo Son (Department of Geology, Kangwon National University) ;
  • Kideok D. Kwon (Department of Geology, Kangwon National University)
  • 김상건 (강원대학교 자연과학대학 지질학과) ;
  • 손상보 (강원대학교 자연과학대학 지질학과) ;
  • 권기덕 (강원대학교 자연과학대학 지질학과)
  • Received : 2024.05.07
  • Accepted : 2024.06.30
  • Published : 2024.06.30

Abstract

X-ray absorption near-edge structure (XANES) spectroscopy can provide qualitative insights into the coordination chemistry of calcium (Ca) across a variety of geological materials. However, systematic studies on Ca K-edge XANES spectral features and the Ca coordination parameters are rare. This study investigated potential correlations between the spectral features of Ca K-edge XANES and the coordination parameters of Ca for selected Ca-bearing minerals (anorthite, aragonite, calcite, diopside, dolomite, grossular, monohydrocalcite, perovskite, and wollastonite), employing density functional theory (DFT) calculations. DFT calculations accurately reproduced the main features of their experimental Ca K-edge XANES spectra for representative silicates, carbonates, and titanates. No strong correlation was observed between XANES peak positions vs. Ca-O distances (or Ca coordination numbers). However, a significant correlation was noted between the peak intensity of post-edge peaks vs. the effective coordination number of Ca in minerals of similar chemical compositions. These results show the potential, yet limited, applicability of XANES spectra for molecular-level research of Ca-bearing geomaterials, and highlight the critical role of DFT computations in interpretating XANES spectra.

X-선 absorption near-edge structure (XANES) 분광분석은 다양한 지구물질의 칼슘(Ca)화학결합에 대한 정성적인 정보를 제공할 수 있으나, XANES 스펙트럼과 Ca 배위환경 간의 상관관계는 아직 체계적으로 규명되어 있지 않다. 이번 연구에서는 밀도범함수이론(density functional theory; DFT) 계산을 통해 대표적인 규산염(회장석, 투휘석, 그로슐라, 규회석), 탄산염(아라고나이트, 방해석, 백운석, 모노하이드로캘사이트), 티탄산염(페로브스카이트) 광물에 대한 Ca K-edge 흡수 스펙트럼과 Ca의 배위환경 사이의 상관관계를 조사하였다. DFT로 계산된 Ca K-edge 흡수 스펙트럼은 실험 XANES 스펙트럼의 주요 형태를 재현할 수 있었다. 광물의 평균 Ca-O 결합거리(또는 Ca의 배위수)와 흡수-끝(absorption edge) 피크 위치 사이에 뚜렷한 상관관계는 관찰되지 않았다. 반면에 Ca의 유효배위수(effective coordination number)가 증가할수록 post-edge 피크의 세기가 감소하는 경향이 관찰되었다. Ca의 유효배위수와 post-edge 피크의 세기 사이의 상관관계는 화학조성이 비슷한 광물에서 더 뚜렷하게 나타났다. 이번 연구결과는 Ca K-edge XANES 스펙트럼을 통해 Ca의 배위 화학의 이해가 제한적으로 가능함을 제시하며, 분광분석 스펙트럼 해석에 DFT 계산 연구의 유용성을 강조한다.

Keywords

Acknowledgement

이연구는 한국연구재단의지원(2019R1A2C2084299)을 받아 수행되었으며, KISTI 슈퍼컴퓨터 자원(KSC-2023-CRE-0070)을 일부 사용하였다.

References

  1. Blochl, P.E., 1994, Projector augmented-wave method. Physical Review B, 50, 17953.
  2. Brinza, L., Schofield, P.F., Hodson, M.E., Weller, S., Ignatyev, K., Geraki, K., Quinn, P.D. and Mosselmans, J.F.W., 2014, Combining µXANES and µXRD mapping to analyse the heterogeneity in calcium carbonate granules excreted by the earthworm Lumbricus terrestris. Journal of synchrotron radiation, 21, 235-241.
  3. Buades, B., Moonshiram, D., Sidiropoulos, T.P., Leon, I., Schmidt, P., Pi, I., Di Palo, N., Cousin, S.L., Picon, A. and Koppens, F., 2018, Dispersive soft x-ray absorption fine-structure spectroscopy in graphite with an attosecond pulse. Optica, 5, 502-506.
  4. Cabaret, D., Emery, N., Bellin, C., Herold, C., Lagrange, P., Wilhelm, F., Rogalev, A. and Loupias, G., 2013, Nature of empty states in superconducting CaC6 and related Li-Ca ternary graphite intercalation compounds using polarized x-ray absorption near-edge structure at the Ca K edge. Physical Review B, 87, 075108.
  5. Cameron, M., Sueno, S., Prewitt, C.T. and Papike, J., 1973, High-temperature crystal chemistry of acmite, diopside, hedenbergite jadeite, spodumene and ureyite. American Mineralogist: Journal of Earth and Planetary Materials, 58, 594-618.
  6. Chaboy, J. and Quartieri, S., 1995, X-ray absorption at the Ca K edge in natural-garnet solid solutions: A full-multiple-scattering investigation. Physical Review B, 52, 6349.
  7. Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.I., Refson, K. and Payne, M.C., 2005, First principles methods using CASTEP. Zeitschrift Fur Kristallographie, 220, 567-570.
  8. De Villiers, J.P., 1971, Crystal structures of aragonite, strontianite, and witherite. American Mineralogist: Journal of Earth and Planetary Materials, 56, 758-767.
  9. Evans, D., Sagoo, N., Renema, W., Cotton, L.J., Muller, W., Todd, J.A., Saraswati, P.K., Stassen, P., Ziegler, M. and Pearson, P.N., 2018, Eocene greenhouse climate revealed by coupled clumped isotope-Mg/Ca thermometry. Proceedings of the National Academy of Sciences, 115, 1174-1179.
  10. Filardi, L.R., Vila, F.D., Hong, J., Hoffman, A.S., Perez-Aguilar, J.E., Bare, S.R., Runnebaum, R.C. and Kronawitter, C.X., 2024, Impact of Local Structure in Supported CaO Catalysts for Soft-Oxidant-Assisted Methane Coupling Assessed through Ca K-Edge X-ray Absorption Spectroscopy. The Journal of Physical Chemistry C, 128, 1165-1176.
  11. Fink, J., 2005, Transmission electron energy-loss spectroscopy. Unoccupied Electronic States (eds. Fuggle, J.C., Inglesfield, J.E.), Springer Berlin, Heidelberg, 203-241.
  12. Fiquet, G., Richet, P. and Montagnac, G., 1999, High-temperature thermal expansion of lime, periclase, corundum and spinel. Physics and Chemistry of Minerals, 27, 103-111.
  13. Gao, S.-P., Pickard, C.J., Perlov, A. and Milman, V., 2009, Corelevel spectroscopy calculation and the plane wave pseudopotential method. Journal of Physics: Condensed Matter, 21, 104203.
  14. Goldstein, J.I., Newbury, D.E., Michael, J.R., Ritchie, N.W., Scott, J.H.J., Joy, D.C., Goldstein, J.I., Newbury, D.E., Michael, J.R. and Ritchie, N.W., 2018, Backscattered electrons. Scanning electron microscopy and X-ray microanalysis, 15-28.
  15. Grangeon, S., Claret, F., Roosz, C., Sato, T., Gaboreau, S. and Linard, Y., 2016, Structure of nanocrystalline calcium silicate hydrates: insights from X-ray diffraction, synchrotron X-ray absorption and nuclear magnetic resonance. Journal of applied crystallography, 49, 771-783.
  16. Hayakawa, S., Hajima, Y., Qiao, S., Namatame, H. and Hirokawa, T., 2008, Characterization of calcium carbonate polymorphs with Ca K edge X-ray absorption fine structure spectroscopy. Analytical Sciences, 24, 835-837.
  17. Henderson, G.S., De Groot, F.M. and Moulton, B.J., 2014, X-ray absorption near-edge structure (XANES) spectroscopy. Reviews in Mineralogy and Geochemistry, 78, 75-138.
  18. Hoppe, R., 1979, Effective coordination numbers (ECoN) and mean fictive ionic radii (MEFIR). Zeitschrift Fur Kristallographie-Crystalline Materials, 150, 23-52.
  19. Ito, T., Sadanaga, R., Takeuchi, Y. and Tokonami, M., 1969, The existence of partial mirrors in wollastonite. Proceedings of the Japan Academy, 45, 913-918.
  20. Izumida, H., Yoshimura, T., Suzuki, A., Nakashima, R., Ishimura, T., Yasuhara, M., Inamura, A., Shikazono, N. and Kawahata, H., 2011, Biological and water chemistry controls on Sr/Ca, Ba/Ca, Mg/Ca and δ18O profiles in freshwater pearl mussel Hyriopsis sp. Palaeogeography, Palaeoclimatology, Palaeoecology, 309, 298-308.
  21. Kasemann, S.A., von Strandmann, P.A.P., Prave, A.R., Fallick, A.E., Elliott, T. and Hoffmann, K.-H., 2014, Continental weathering following a Cryogenian glaciation: Evidence from calcium and magnesium isotopes. Earth and Planetary Science Letters, 396, 66-77.
  22. Koningsberger, D.C. and Prins, R., 1987, X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES.
  23. Li, W., Liu, X.M. and Hu, Y., 2020, Potassium and Calcium K-Edge XANES in Chemical Compounds and Minerals: Implications for Geological Phase Identification. Geostandards and Geoanalytical Research, 44, 805-819.
  24. Magnien, V., Neuville, D., Cormier, L., Roux, J., Hazemann, J.-L., De Ligny, D., Pascarelli, S., Vickridge, I., Pinet, O. and Richet, P., 2008, Kinetics and mechanisms of iron redox reactions in silicate melts: The effects of temperature and alkali cations. Geochimica et Cosmochimica Acta, 72, 2157-2168.
  25. Mamedov, K.S., Crystal structure of wollastonite. Proceedings of the Doklady Akad. Nauk SSSR, 1956, 463-466. 
  26. Markgraf, S.A. and Reeder, R.J., 1985, High-temperature structure refinements of calcite and magnesite. American Mineralogist, 70, 590-600.
  27. Meagher, E., 1975, The crystal structures of pyrope and grossularite at elevated temperatures. American Mineralogist: Journal of Earth and Planetary Materials, 60, 218-228.
  28. Michel, F.M., MacDonald, J., Feng, J., Phillips, B.L., Ehm, L., Tarabrella, C., Parise, J.B. and Reeder, R.J., 2008, Structural characteristics of synthetic amorphous calcium carbonate. Chemistry of Materials, 20, 4720-4728.
  29. Mizoguchi, T., Tanaka, I., Gao, S.-P. and Pickard, C.J., 2009, First-principles calculation of spectral features, chemical shift and absolute threshold of ELNES and XANES using a plane wave pseudopotential method. Journal of Physics Condensed Matter, 21, 104204.
  30. Mizoguchi, T., Tanaka, I., Yoshioka, S., Kunisu, M., Yamamoto, T. and Ching, W., 2004, First-principles calculations of ELNES and XANES of selected wide-gap materials: dependence on crystal structure and orientation. Physical Review B, 70, 045103.
  31. Monkhorst, H.J. and Pack, J.D., 1976, Special points for Brillouin-zone integrations. Physical Review B, 13, 5188-5192.
  32. Mougoyannis, P., 2016, Reactive CaCO3 nucleation and nanoparticles growth in non-aqueous phase. University of Leeds, Transfer Report, http://doi.org/10.13140/RG.2.2.30457.16488.
  33. Neuville, D.R., De Ligny, D. and Henderson, G.S., 2014, Advances in Raman spectroscopy applied to earth and material sciences. Reviews in mineralogy and geochemistry, 78, 509-541.
  34. Okajima, T., Yasukawa, K. and Umesaki, N., 2010, Local structure of Ca dopant in BaTiO3 by Ca K-edge X-ray absorption near-edge structure and first-principles calculations. Journal of Electron Spectroscopy and Related Phenomena, 180, 53-57.
  35. Perdew, J.P., Burke, K. and Ernzerhof, M., 1996, Generalized Gradient Approximation Made Simple. Physical Review Letters, 77, 3865-3868.
  36. Pickard, C.J., 1997, Ab initio electron energy loss spectroscopy, Ph.D. dissertation, University of Cambridge, 151p.
  37. Son, S., Li, W., Lee, J.-Y. and Kwon, K.D., 2020, On the coordination of Mg2+ in aragonite: Ab-initio absorption spectroscopy and isotope fractionation study. Geochimica et Cosmochimica Acta, 286, 324-335.
  38. Sowrey, F.E., Skipper, L.J., Pickup, D.M., Drake, K.O., Lin, Z., Smith, M.E. and Newport, R.J., 2004, Systematic empirical analysis of calcium-oxygen coordination environment by calcium K-edge XANES. Physical Chemistry Chemical Physics, 6, 188-192.
  39. Staroverov, V.N., Scuseria, G.E., Tao, J. and Perdew, J.P., 2004, Tests of a ladder of density functionals for bulk solids and surfaces. Physical Review B, 69, 075102.
  40. Steinfink, H. and Sans, F., 1959 Refinement of the crystal structure of dolomite, Mineralogical Society of America.
  41. Swainson, I.P., 2008, The structure of monohydrocalcite and the phase composition of the beachrock deposits of Lake Butler and Lake Fellmongery, South Australia. American Mineralogist, 93, 1014-1018.
  42. Takahashi, O., Tamenori, Y., Suenaga, T., Ikeda-Fukazawa, T., Matsuno, J. and Tsuchiyama, A., 2018, XANES spectra of forsterite in crystal, surface, and amorphous states. AIP Advances, 8.
  43. Tipper, E., Galy, A. and Bickle, M., 2006, Riverine evidence for a fractionated reservoir of Ca and Mg on the continents: implications for the oceanic Ca cycle. Earth and Planetary Science Letters, 247, 267-279.
  44. Trcera, N., Cabaret, D., Rossano, S., Farges, F., Flank, A.-M. and Lagarde, P., 2009, Experimental and theoretical study of the structural environment of magnesium in minerals and silicate glasses using X-ray absorption near-edge structure. Physics and Chemistry of Minerals, 36, 241-257.
  45. Vanderbilt, D., 1990, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 41, 7892-7895.
  46. Wainwright, J. and Starkey, J., 1971, A refinement of the structure of anorthite. Zeitschrift fur Kristallographie-Crystalline Materials, 133, 75-84.
  47. Westre, T.E., Kennepohl, P., DeWitt, J.G., Hedman, B., Hodg-son, K.O. and Solomon, E.I., 1997, A multiplet analysis of Fe K-edge 1s→3d pre-edge features of iron complexes. Journal of the American Chemical Society, 119, 6297-6314.
  48. Yamanaka, T., Hirai, N. and Komatsu, Y., 2002, Structure change of Ca1-xSrx TiO3 perovskite with composition and pressure. American Mineralogist, 87, 1183-1189.
  49. Yaroshevsky, A.A., 2006, Abundances of chemical elements in the Earth's crust. Geochemistry International, 44, 48-55.
  50. Zhu, J., Zeng, Z. and Li, W.-X., 2021, K-Edge XANES Investigation of Fe-Based Oxides by Density Functional Theory Calculations. The Journal of Physical Chemistry C, 125, 26229-26239.