DOI QR코드

DOI QR Code

Origin and Mineralogical-geochemical Characteristics of the Ferromanganese Nodule on the Western Pacific Seafloor

서태평양 심해저 망가니즈 단괴의 광물학적-지화학적 특성과 성인 연구

  • Hyeonho An (Ocean Georesources Research Department, Korea Institute of Ocean Science & Technology) ;
  • Kiho Yang (Department of Oceanography, Pusan National University) ;
  • Youngtak Ko (Ocean Georesources Research Department, Korea Institute of Ocean Science & Technology) ;
  • Yongmoon Lee (Department of Geological Sciences, Pusan National University) ;
  • Jaewoo Jung (Ocean Georesources Research Department, Korea Institute of Ocean Science & Technology)
  • 안현호 (한국해양과학기술원 대양자원연구부) ;
  • 양기호 (부산대학교 해양학과 ) ;
  • 고영탁 (한국해양과학기술원 대양자원연구부) ;
  • 이용문 (부산대학교 지질환경과학과) ;
  • 정재우 (한국해양과학기술원 대양자원연구부)
  • Received : 2024.06.13
  • Accepted : 2024.06.26
  • Published : 2024.06.30

Abstract

This study investigated the origin and mineralogical-geochemical characteristics of a small ferromanganese (Fe-Mn) nodule sample obtained from the abyssal seafloor of the Magellan Seamount cluster. To this end, X-ray diffraction and X-ray fluorescence analyses were conducted. The dark brown Fe-Mn oxides constituting the nodule had a homogeneous texture without distinguishable layers, forming around three distinct nuclei. The oxides had a low average Mn/Fe ratio of 0.73 (0.24-1.10) and were characterized by high Co content (0.41-0.85 wt.%, average = 0.58 wt.%) as well as low Ni (0.06-1.24 wt.%, average = 0.55 wt.%) and Cu (0.27-1.02 wt.%, average = 0.59 wt.%) concentrations. The maximum age of the nodule was estimated at 0.52 Ma, suggesting that it began forming during the transition from the glacial to the interglacial periods in the middle Pleistocene. The Fe-Mn oxide layer comprised vernadite, smectite, quartz, and feldspar, while the nuclei were composed of soft sediments. The presence of vernadite, a typical hydrogenetic Fe-Mn oxide mineral, along with the low Mn/Fe ratio, high Co content, and low Ni and Cu concentrations, indicates that Fe-Mn nodules on the abyssal seafloor of the Magellan Seamount cluster in the western Pacific Ocean formed through hydrogenetic processes.

본 연구에서는 X-선 회절분석과 X-선 형광분석을 통해 서태평양 실해역 탐사 동안 마젤란 해산군 심해저면에서 획득한 소형 망가니즈 단괴의 광물학적-지화학적 특성과 성인을 파악하고자 하였다. 어두운 갈색의 망가니즈 산화물은 육안으로 구분되는 층이 없이 균질 하였으며, 세 개로 나뉘어 있는 핵을 감싸는 형태로 형성되었다. 망가니즈 산화물에서 평균 0.73(0.24-1.10)의 낮은 Mn/Fe 비를 보였으며 높은 Co 함량(0.41-0.85 wt.%; 평균 0.58 wt.%)과 낮은 Ni(0.06-1.24 wt.%; 평균 0.55 wt.%), Cu(0.27-1.02 wt.%; 평균 0.59 wt.%) 함량이 나타났다. 단괴의 최대 연령은 약 0.52 Ma로 플라이스토세 중기의 빙하기에서 간빙기로 전환되는 시기에 형성되기 시작하였을 것으로 보인다. 망가니즈 산화물 층은 버나다이트, 스멕타이트, 석영, 장석으로 이루어져 있으며 핵은 해저 퇴적물로 구성되었음을 확인하였다. 대표적인 수성기원 망가니즈 산화 광물인 버나다이트와 낮은 Mn/Fe 비, 높은 Co 함량과 낮은 Ni, Cu의 함량은 서태평양 마젤란 해산군 심해저면의 망가니즈 단괴가 수성기원으로 형성되었음을 지시한다.

Keywords

Acknowledgement

이 논문은 2024년도 해양수산부 재원으로 해양수산과학기술진흥원의지원을받아수행된연구임(20220509, 서태평양 해저산 고코발트 망간각 자원개발 유망광구선정).

References

  1. Chen, J., Li, G., Yang, J., Rao, W., Lu, H., Balsam, W., Sun, Y., Ji, J., 2007, Nd and Sr isotopic characteristics of Chinese deserts: Implications for the provenances of Asian dust. Geochimica et Cosmochimica Acta 71, 3904-3914.
  2. Clark, P.U., Archer, D., Pollard, D., Blum, J.D., Rial, J.A., Brovkin, V., Mix, A.C., Pisias, N.G., Roy, M., 2006, The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quaternary Science Reviews 25, 3150-3184.
  3. Cronan, D., 1997, Some controls on the geochemical variability of manganese nodules with particular reference to the tropical South Pacific. Geological Society, London, Special Publications 119, 139-151.
  4. Cronan, D., Hodkinson, R., 1994, Element supply to surface manganese nodules along the Aitutaki-Jarvis Transect, South Pacific. Journal of the Geological Society 151, 391-401.
  5. Cronan, D.S., 1980, Underwater minerals.
  6. Cuadros, J., Dekov, V.M., Arroyo, X., Nieto, F., 2011, Smectite formation in submarine hydrothermal sediments: Samples from the HMS Challenger expedition (1872-1876). Clays and Clay Minerals 59, 147-164.
  7. Dymond, J., Lyle, M., Finney, B., Piper, D.Z., Murphy, K., Conard, R., Pisias, N., 1984, Ferromanganese nodules from MANOP Sites H, S, and R-Control of mineralogical and chemical composition by multiple accretionary processes. Geochimica et Cosmochimica Acta 48, 931-949.
  8. Glasby, G.P., Ren, X., Shi, X., Pulyaeva, I.A., 2007, Co-rich Mn crusts from the Magellan Seamount cluster: the long journey through time. Geo-Marine Letters 27, 315-323.
  9. Halbach, P., Hebisch, U., Scherhag, C., 1981a, Geochemical variations of ferromanganese nodules and crusts from different provinces of the Pacific Ocean and their genetic control. Chemical Geology 34, 3-17.
  10. Halbach, P., Puteanus, D., 1984, The influence of the carbonate dissolution rate on the growth and composition of Corich ferromanganese crusts from Central Pacific seamount areas. Earth and Planetary Science Letters 68, 73-87.
  11. Halbach, P., Scherhag, C., Hebisch, U., Marchig, V., 1981b, Geochemical and mineralogical control of different genetic types of deep-sea nodules from the Pacific Ocean. Mineralium Deposita 16, 59-84.
  12. Halbach, P., Segl, M., Puteanus, D., Mangini, A., 1983, Co-fluxes and growth rates in ferromanganese deposits from central Pacific seamount areas. Nature 304, 716-719.
  13. Hao, Q., Wang, L., Oldfield, F., Guo, Z., 2015, Extra-long interglacial in Northern Hemisphere during MISs 15-13 arising from limited extent of Arctic ice sheets in glacial MIS 14. Scientific Reports 5, 12103.
  14. Hein, J.R., Koschinsky, A., Bau, M., Manheim, F.T., Kang, J.-K., Roberts, L., 2000, Cobalt-rich ferromanganese crusts in the Pacific. Handbook of marine mineral deposits 18, 239-279.
  15. Hein, J.R., Mizell, K., Koschinsky, A., Conrad, T.A., 2013, Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources. Ore Geology Reviews 51, 1-14.
  16. Hein, J.R., Yeh, H.W., Gunn, S.H., Sliter, W.V., Benninger, L.M., Wang, C.H., 1993, Two major Cenozoic episodes of phosphogenesis recorded in equatorial Pacific seamount deposits. Paleoceanography 8, 293-311.
  17. Hyeong, K., Kim, J., Yoo, C.M., Moon, J.-W., Kim, K.-H., 2008, Phosphogensis recorded in the Co-rich crusts of the northwest Pacific seamounts. Journal of the Geological Society of Korea 44, 435-446.
  18. Jiang, X., Zhao, X., Zhao, X., Chou, Y.M., Roberts, A., Hein, J., Yu, J., Sun, X., Shi, X., Cao, W., 2022, Abyssal manganese nodule recording of global cooling and Tibetan Plateau uplift impacts on Asian aridification. Geophys. Res. Lett. 49, e2021GL096624.
  19. Joo, J., Kim, J., Ko, Y., Kim, S.-S., Son, J., Pak, S.J., Ham, D.-J., Son, S.K., 2016, Characterizing geomorphological properties of western Pacific seamounts for cobalt-rich ferromanganese crust resource assessment. Economic and Environmental Geology 49, 121-134.
  20. Jung, H., Jeong, K., Lee, K., Kang, J., Jung, M., 1990, Origin of manganese nodules and their distribution in the KODOS-89 area, northeastern equatorial Pacific. J Korean Soc Oceanogr 25, 189-204.
  21. Jung, J., Hyeong, K., Kim, J.H., Kim, J., Ko, Y., Yang, K., Lee, Y., An, H., 2022, Latitudinal changes in elemental composition of smectite in deep sea sediments and its implication for microbial activity along the transect of equatorial Pacific Ocean. Applied Clay Science 229, 106672.
  22. Kim, J., Ko, Y.-T., Hyeong, K., Moon, J.-W., 2013, Geophysical and Geological Exploration of Cobalt-rich Ferromanganese Crusts on a Seamount in the Western Pacific. Economic and Environmental Geology 46, 569-580.
  23. Kim, S., Takahashi, K., Khim, B.-K., Kanematsu, Y., Asahi, H., Ravelo, A.C., 2014, Biogenic opal production changes during the Mid-Pleistocene transition in the Bering Sea (IODP Expedition 323 Site U1343). Quatern. Res. 81, 151-157.
  24. Klinkhammer, G., Heggie, D., Graham, D., 1982, Metal diagenesis in oxic marine sediments. Earth and Planetary Science Letters 61, 211-219.
  25. Kuhn, T., Wegorzewski, A., Ruhlemann, C., Vink, A., 2017, Composition, Formation, and Occurrence of Polymetallic Nodules, Deep-Sea Mining, pp. 23-63.
  26. Ling, H., Burton, K., O'nions, R., Kamber, B., von Blanckenburg, F., Gibb, A., Hein, J., 1997, Evolution of Nd and Pb isotopes in Central Pacific seawater from ferromanganese crusts. Earth and Planetary Science Letters 146, 1-12.
  27. Manheim, F., Lane-Bostwick, C., 1988, Cobalt in ferromanganese crusts as a monitor of hydrothermal discharge on the Pacific sea floor. Nature 335, 59-62.
  28. McClymont, E.L., Rosell-Mele, A., 2005, Links between the onset of modern Walker circulation and the mid-Pleistocene climate transition. Geology 33, 389-392.
  29. McMurtry, G., VonderHaar, D., Eisenhauer, A., Mahoney, J., Yeh, H.-W., 1994, Cenozoic accumulation history of a Pacific ferromanganese crust. Earth and planetary science letters 125, 105-118.
  30. Park, J., Jung, J., Ko, Y., Lee, Y., Yang, K., 2023a, Reconstruction of the Paleo-Ocean Environment Using Mineralogical and Geochemical Analyses of Mixed-Type Ferromanganese Nodules From the Tabletop of Western Pacific Magellan Seamount. Geochemistry, Geophysics, Geosystems 24, e2022GC010768.
  31. Park, J., Yang, K., 2023, Revealing the Paleo-ocean Environment of OSM-XX in the Western Pacific Magellan Seamount with Mineralogical and Geochemical Properties of Ferromanganese Crust. Economic and Environmental Geology 56, 55-63.
  32. Park, K., Jung, J., Park, J., Ko, Y., Lee, Y., Yang, K., 2023b, Geochemical-mineralogical analysis of ferromanganese oxide precipitated on porifera in the Magellan seamount, western Pacific. Frontiers in Marine Science 9, 1086610.
  33. Piper, D.Z., Blueford, J.R., 1982, Distribution, mineralogy, and texture of manganese nodules and their relation to sedimentation at DOMES Site A in the equatorial North Pacific. Deep Sea Research Part A. Oceanographic Research Papers 29, 927-951.
  34. Ren, X., Glasby, G., Liu, J., Shi, X., Yin, J., 2007, Fine-scale compositional variations in a Co-rich Mn crust from the Marcus-Wake Seamount cluster in the western Pacific based on electron microprobe analysis (EMPA). Marine Geophysical Researches 28, 165-182.
  35. Seo, I., Lee, Y.I., Yoo, C.M., Kim, H.J., Hyeong, K., 2014, Sr-Nd isotope composition and clay mineral assemblages in eolian dust from the central Philippine Sea over the last 600 kyr: Implications for the transport mechanism of Asian dust. Journal of Geophysical Research: Atmospheres 119, 11,492-411,504.
  36. Shin, J.Y., Kim, W., Hyeong, K., 2020, High potency of volcanic contribution to the ~400 kyr sedimentary magnetic record in the Northwest Pacific. Frontiers in Earth Science 8, 300.
  37. Smrzka, D., Zwicker, J., Bach, W., Feng, D., Himmler, T., Chen, D., Peckmann, J., 2019, The behavior of trace elements in seawater, sedimentary pore water, and their incorporation into carbonate minerals: a review. Facies 65, 1-47.
  38. Usui, A., Someya, M., 1997, Distribution and composition of marine hydrogenetic and hydrothermal manganese deposits in the northwest Pacific. Geological Society, London, Special Publications 119, 177-198.
  39. Verlaan, P.A., Cronan, D.S., 2022, Origin and variability of resource-grade marine ferromanganese nodules and crusts in the Pacific Ocean: A review of biogeochemical and physical controls. Geochemistry 82, 125741.
  40. Verlaan, P.A., Cronan, D.S., Morgan, C.L., 2004, A comparative analysis of compositional variations in and between marine ferromanganese nodules and crusts in the South Pacific and their environmental controls. Progress in Oceanography 63, 125-158.
  41. Vineesh, T., Nagender Nath, B., Banerjee, R., Jaisankar, S., Lekshmi, V., 2009, Manganese nodule morphology as indicators for oceanic processes in the Central Indian Basin. International Geology Review 51, 27-44.
  42. Wang, X.H., Schlossmacher, U., Natalio, F., Schroder, H.C., Wolf, S.E., Tremel, W., Muller, W.E., 2009, Evidence for biogenic processes during formation of ferromanganese crusts from the Pacific Ocean: implications of biologically induced mineralization. Micron 40, 526-535.
  43. Willeit, M., Ganopolski, A., Calov, R., Brovkin, V., 2019, Mid-Pleistocene transition in glacial cycles explained by declining CO2 and regolith removal. Science Advances 5, eaav7337.
  44. Yajima, M., 2022, Chibanian, Middle Pleistocene. Travaux du Comite francais d'Histoire de la Geologie 3, 93-96.
  45. Yang, K., Jung, J., 2022, Mineralogical-geochemical Characteristics of Manganese Nodules in the Deep Subseafloor Sediments at Site U1371 in the Western South Pacific Gyre Area. Ocean Polar Res. 44, 139-145-139-145.
  46. Yang, K., Kim, J.-w., Kogure, T., Dong, H., Baik, H., Hoppie, B., Harris, R., 2016, Smectite, illite, and early diagenesis in South Pacific Gyre subseafloor sediment. Applied Clay Science 134, 34-43.
  47. Yang, K., Park, H., Son, S.-K., Baik, H., Park, K., Kim, J., Yoon, J., Park, C.H., Kim, J., 2019, Electron microscopy study on the formation of ferromanganese crusts, western Pacific Magellan Seamounts. Mar. Geol. 410, 32-41.
  48. Yang, Z., Qian, Q., Chen, M., Zhang, R., Yang, W., Zheng, M., Qiu, Y., 2020, Enhanced but highly variable bioturbation around seamounts in the northwest Pacific. Deep Sea Research Part I: Oceanographic Research Papers 156, 103190.
  49. Zhang, W., Liu, Y., Zhao, W., 2023, Occurrence and enrichment of cobalt in ferromanganese nodules from the Western Pacific. Ore Geology Reviews, 105758.