DOI QR코드

DOI QR Code

Photoneutron yield for an electron beam on tantalum and erbium deuteride

  • Andrew K. Gillespie (Department of Physics and Astronomy, Texas Tech University) ;
  • Cuikun Lin (Department of Physics and Astronomy, Texas Tech University) ;
  • R.V. Duncan (Department of Physics and Astronomy, Texas Tech University)
  • 투고 : 2023.09.11
  • 심사 : 2024.03.05
  • 발행 : 2024.08.25

초록

An electron beam may be used to generate bremsstrahlung photons that go on to create photoneutrons within metals. This serves as a low-energy neutron source for irradiation experiments. In this article, we present simulation results for optimizing photoneutron yield for a 10-MeV electron beam on tantalum foil and erbium deuteride (ErD3). The thickness of the metal layers was varied. A tantalum foil thickness of 1.5 mm resulted in the most photons reaching the second metal layer. When a second metal layer of ErD3 was included, the photoneutron yield increased with the thickness of the secondary layer. When the electron beam was directly incident upon a layer of ErD3, the photoneutron yield did not differ significantly from the yield when a layer of tantalum was included. The directional photoneutron yield reached a maximum level when the thickness of the ErD3 layer was around 12 cm. About 1 neutron was generated per 104 source electrons. When using a 2-mA beam current, it is possible to generate up to 1012 neutrons per second, making this combination a relatively-inexpensive neutron generator.

키워드

과제정보

The authors would like to thank Dr John Gahl at the University of Missouri for their useful discussions. This work was supported by NIAC Phase I contract No. 80NSSC23K0592 and the Texas Research Incentive Program, and by Texas Tech University. The identification of commercial products, contractors, and suppliers within this article are for informational purposes only, and do not imply endorsement by Texas Tech University, their associates, or their collaborators.

참고문헌

  1. T.P. Lou, Compact D-D/D-T Neutron Generators and Their Applications, University of California, 2003. 
  2. United States Nuclear Regulatory Commission, Neutron Sources, Basic Health Physics, 2010, 0751 - H122 - 25, https://www.nrc.gov/docs/ML1122/ML1122 9A704.pdf. 
  3. International Atomic Energy Agency, Neutron Generators for Analytical Purposes, IAEA, Vienna, 2012. IAEA Radiation Technology Reports No. 1. 
  4. D. Schlissel, B. Biewald, Nuclear Power Plant Construction Costs, Synapse Energy Economics, Inc., July 2008. 
  5. United States Department of Energy, Workshop on Energy and Environmental Applications of Accelerators, 49, June 24-26, 2015. 
  6. G. Chmielewski Andrzej, Future developments in radiation processing, in: Y. Sun (Ed.), Applications of Ionizing Radiation in Materials Processing, first ed., Institute of Nuclear Chemistry and Technology, Warsaw, Poland, 2017, pp. 501-516. 
  7. F. Tabbakh, M.M. Aldaavati, M.S. Hoseyni, et al., Induced photonuclear interaction by Rhodotron-TT200 10 MeV electron beam, Pramana - J. Phys. 78 (2012) 257-264, https://doi.org/10.1007/s12043-011-0232-y. 
  8. V.L. Chakhlov, et al., Nucl. Instr. and Meth. in Phys. Res. A 422 (1999) 5-9. 
  9. V.P. Kovalev, Secondary Radiations in Electron Accelerators, Atomizdat, Moscow, 1979. 
  10. I.K. Alhagaish, V.K. Sakharov, Characterization of bremsstrahlung radiation for 10 - 30 and 60-MeV electron beam from thick tungsten, International Journal of Scientific & Technology Research 9 (June 2020), 06. 
  11. J. Gahl, G. Dale, Method and Apparatus for Generating Thermal Neutrons Using and Electron Accelerator, U.S Patent No. US8666015B2, 2014. 
  12. A. Tsechanski, A.F. Bielajew, J.P. Archambault, E. Mainegra-Hing, Electron accelerator-based production of molybdenum-99: bremsstrahlung and photoneutron generation from molybdenum vs. tungsten, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 366 (2016) 124-139. 
  13. M.J. Berger, S.M. Seltzer, Bremsstrahlung and photoneutrons from thick tungsten and tantalum targets, Phys. Rev. C 2 (Aug 1970) 621-631, 5, 6. 
  14. M.B. Zarandi, F. Tabbakh, H.A. Bioki, Neutron generation from 10MeV electron beam to produce 99Mo, Int. J. Sci. Eng. Tech. 4 (2015) 1-4. 
  15. B.L. Berman, At. Data Nucl. Data Tables 15 (1975) 319-390. 
  16. B. Steinetz, et al., Novel nuclear reactions observed in bremsstrahlung-irradiated deuterated metals, NASA TP-20205001616, and Phys. Rev. C 101 (2020) 044610. 
  17. X. Mao, K. Kase, W. Nelson, Giant dipole resonance neutron yields produced by electrons as a function of target material and thickness, Health Phys. 70 (2) (1996 Feb) 207-214, https://doi.org/10.1097/00004032-199602000-00008. PMID:8567288. 
  18. M. Zolfaghari, S.F. Masoudi, F. Rahmani, A. Fethi, Thermal neutron beam optimization for PGNAA applications using Q-learning algorithm and neural network, Sci. Rep. 12 (2022) 8635, https://doi.org/10.1038/s41598-022-12187-4. 
  19. Bayardadrakh Baramsai, Theresa Benyo, Lawrence Forsley, Bruce Steinetz, NASA's new shortcut to fusion power, IEEE Spectrum, February 27, 2022. https://spectrum.ieee.org/lattice-confinement-fusion. (Accessed 29 January 2024). 
  20. J.A. Kulesza, et al., MCNP® Code Version 6.3.0 Theory & User Manual, Los Alamos National Laboratory Tech, Los Alamos, NM, USA, September 2022. Rep. LA-UR-22-30006, Rev. 1. 
  21. N. Wauschkuhn, K. Frenzel, B. Beckhoff, P. Honicke, Experimental determination of tantalum L-shell fluorescence yields and Coster-Kronig transition probabilities, J. Anal. At. Spectrom. 38 (2023) 197. 
  22. XRF Research Inc, XRF Spectrum Tantalum, 2024. http://www.xrfresearch.com/xrf-spectrum-tantalum. (Accessed 29 January 2024). 
  23. W.L. Huang, et al., Nucl. Instr. and Meth. in Phys. Res. B 229 (2005) 339-347. 
  24. G. Hale, ENDF/B-VII.1: nuclear data for science and technology: cross sections, covariances, fission product yields and decay data, Nucl. Data Sheets 112 (2011) 2887. 
  25. T. Murata, Japanese evaluated nuclear data library version 5: jendl-5, J. Nucl. Sci. Technol. 60 (2023) 1. 
  26. Sabia, Inc, 252Cf Neutron Sources, 2022. https://sabiainc.com/cf-252-neutron-sources/. (Accessed 30 January 2024). 
  27. ThermoFisher Scientific, PGNAA and PFTNA Technology, 2024. https://www.thermofisher.com/us/en/home/industrial/cement-coal-minerals/cement-coal-minerals-learning-center/cement-analysis-production-information/pgnaa-pftna-technology.html. (Accessed 30 January 2024). 
  28. ThermoFisher Scientific, CB Omni Agile Online Elemental Analyzer, 2022. https://assets.thermofisher.com/TFS-Assets/CAD/Datasheets/cb-omni-agile-online-elemental-analyzer-datasheet.pdf. (Accessed 30 January 2024). 
  29. P.J. Littrup, A.V. Babkin, R. Duncan, S. Boldarov, Cryotherapy System, US Patent 7,083,612, 2006.