• Title/Summary/Keyword: Neutron generator

Search Result 41, Processing Time 0.052 seconds

A high-stability neutron generator for industrial online elemental analysis

  • Xiang-quan Chen;Lei Xiong;Hui Xie;Jing-fu Guo;Xue-ming Zhang;Yong-jun Dong
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1441-1453
    • /
    • 2024
  • The yield stability of the neutron generator directly affects the accuracy of elemental analysis. This paper presents an industrial fully automatic neutron generator with a 48 mm neutron tube based on PLC to improve the stability and reliability of the neutron generator in industrial applications. By integrating a Kalman Filter with the PID algorithm in a PLC, the neutron yield of the generator is remarkably stabilized, achieving 1 × 108n/s. The neutron generator has been employed for industrial online elemental analysis. The results demonstrate that only a slight fluctuation of ±0.82 % exists in the neutron yield, and the reproducibility of the generator holds at a significant level of 0.05. This improved neutron generator can be applied to the online bulk analysis of carbon in coal-fired power stations and absolute measurement of neutron source emission rate.

Occupational radiation exposure control analyses of 14 MeV neutron generator facility: A neutronic assessment for the biological and local shield design

  • Swami, H.L.;Vala, S.;Abhangi, M.;Kumar, Ratnesh;Danani, C.;Kumar, R.;Srinivasan, R.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1784-1791
    • /
    • 2020
  • The 14 MeV neutron generator facility is being developed by the Institute for Plasma Research India to conduct the lab scale experiments related to Indian breeding blanket system for ITER and DEMO. It will also be utilized for material testing, shielding experiments and development of fusion diagnostics. Occupational radiation exposure control is necessary for the all kind of nuclear facilities to get the operational licensing from governing authorities and nuclear regulatory bodies. In the same way, the radiation exposure for the 14 MeV neutron generator facility at the occupational worker area and accessible zones for general workers should be under the permissible limit of AERB India. The generator is designed for the yield of 1012 n/s. The shielding assessment has been made to estimate the radiation dose during the operational time of the neutron generator. The facility has many utilities and constraints like ventilation ducts, accessible doors, accessibility of neutron generator components and to conduct the experiments which make the shielding assessment challenging to provide proper safety for occupational workers and the general public. The neutron and gamma dose rates have been estimated using the MCNP radiation transport code and ENDF -VII nuclear data libraries. The ICRP-74 fluence to dose conversion coefficients has been used for the assessment. The annual radiation exposure has been assessed by considering 500 h per year operational time. The provision of local shield near to neutron generator has been also evaluated to reduce the annual radiation doses. The comprehensive results of radiation shielding capability of neutron generator building and local shield design have been presented in the paper along with detailed maps of radiation field.

A Study On Hardware Design for High Speed High Precision Neutron Measurement (고속 고정밀 중성자 측정을 위한 하드웨어 설계에 관한 연구)

  • Jang, Kyeong-Uk;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.20 no.1
    • /
    • pp.61-67
    • /
    • 2016
  • In this paper, a hardware design method is proposed for high speed high precision neutron radiation measurements. Our system is fabricated to use a high performance A/D Converter for digital data conversion of high precision and high speed analog signals. Using a neutron sensor, incident neutron radiation particles are detected; a precision microcurrent measurement module is also included: this module allows for more precise and rapid neutron radiation measurement design. The high speed high precision neutron measurement hardware system is composed of the neutron sensor, variable high voltage generator, microcurrent precision measurement component, embedded system, and display screen. The neutron sensor detects neutron radiation using high density polyethylene. The variable high voltage generator functions as a 0 ~ 2KV variable high voltage generator that is robust against heat and noise; this generator allows the neutron sensor to perform normally. The microcurrent precision measurement component employs a high performance A/D Converter to precisely and swiftly measure the high precision high speed microcurrent signal from the neutron sensor and to convert this analog signal into a digital one. The embedded system component performs multiple functions including neutron radiation measurement for high speed high precision neutron measurements, variable high voltage generator control, wired and wireless communications control, and data recording. Experiments using the proposed high speed high precision neutron measurement hardware shows that the hardware exhibits superior performance compared to that of conventional equipment with regard to measurement uncertainty, neutron measurement rate, accuracy, and neutron measurement range.

MEASUREMENT OF THE D-D NEUTRON GENERATION RATE BY PROTON COUNTING

  • Kim, In-Jung;Jung, Nam-Suk;Choi, Hee-Dong
    • Nuclear Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.299-304
    • /
    • 2008
  • A detection system was set up to measure the neutron generation rate of a recently developed D-D neutron generator. The system is composed of a Si detector, He-3 detector, and electronics for pulse height analysis. The neutron generation rate was measured by counting protons using the Si detector, and the data was crosschecked by counting neutrons with the He-3 detector. The efficiencies of the Si and He-3 detectors were calibrated independently by using a standard alpha particle source $^{241}Am$ and a bare isotopic neutron source $^{252}Cf$, respectively. The effect of the cross-sectional difference between the D(d,p)T and $D(d,n)^3He$ reactions was evaluated for the case of a thick target. The neutron generation rate was theoretically corrected for the anisotropic emission of protons and neutrons in the D-D reactions. The attenuations of neutron on the path to the He-3 detector by the target assembly and vacuum flange of the neutron generator were considered by the Monte Carlo method using the MCNP 4C2 code. As a result, the neutron generation rate based on the Si detector measurement was determined with a relative uncertainty of ${\pm}5%$, and the two rates measured by both detectors corroborated within 20%.

Neutronic design of pulsed neutron facility (PNF) for PGNAA studies of biological samples

  • Oh, Kyuhak
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.262-268
    • /
    • 2022
  • This paper introduces a novel concept of the pulsed neutron facility (PNF) for maximizing the production of the thermal neutrons and its application to medical use based on prompt gamma neutron activation analysis (PGNAA) using Monte Carlo simulations. The PNF consists of a compact D-T neutron generator, a graphite pile, and a detection system using Cadmium telluride (CdTe) detector arrays. The configuration of fuel pins in the graphite monolith and the design and materials for the moderating layer were studied to optimize the thermal neutron yields. Biological samples - normal and cancerous breast tissues - including chlorine, a trace element, were used to investigate the sensitivity of the characteristic γ-rays by neutron-trace material interactions and the detector responses of multiple particles. Around 90 % of neutrons emitted from a deuterium-tritium (D-T) neutron generator thermalized as they passed through the graphite stockpile. The thermal neutrons captured the chlorines in the samples, then the characteristic γ-rays with specific energy levels of 6.12, 7.80 and 8.58 MeV were emitted. Since the concentration of chlorine in the cancerous tissue is twice that in the normal tissue, the count ratio of the characteristic g-rays of the cancerous tissue over the normal tissue is approximately 2.

Investigation of Response of Several Neutron Surveymeters by a DT Neutron Generator (DT 중성자 발생기에 의한 중성자 검출기 반응도 조사)

  • Kim, Sang-In;Jang, In-Su;Kim, Jang-Lyul;Lee, Jung-Il;Kim, Bong-Hwan
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.1
    • /
    • pp.35-40
    • /
    • 2012
  • Several neutron measuring devices were tested under the neutron fields characterized with two distinct kinds of thermal and fast neutron spectrum. These neutron fields were constructed by the mixing of both thermal neutron fields and fast neutron fields. The thermal neutron field was constructed using by a graphite pile with eight AmBe neutron sources. The fast neutron field of 14 MeV was made by a DT neutron generator. In order to change the fraction of fast neutron fluence rate in each neutron fields, a neutron generator was placed in the thermal neutron field at 50 cm and 150 cm from the reference position. The polyethylene neutron collimator was used to make moderated 14 MeV neutron field. These neutron spectra were measured by using a Bonner sphere system with an LiI scintillator, and dosimetric quantities delivered to neutron surveymeters were determined from these measurement results.

Neutron irradiation impact on structural and electrical properties of polycrystalline Al2O3

  • Sunil Kumar;Sejal Shah;S. Vala;M. Abhangi;A. Chakraborty
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.402-409
    • /
    • 2024
  • High energy neutron irradiations impact on structural and electrical properties of alumina are studied with particular emphasis on real time in-situ radiation induced conductivity measurement in low flux region. Polycrystalline Al2O3 samples are subjected to high energy neutrons produced from D-T neutron generator and Am-Be neutron source. 14 MeV neutrons from D-T generator are chosen to study the role of fast neutron irradiation in the structural modification of samples. Real time in-situ electrical measurement is performed to investigate the change in insulation resistance of Al2O3 due to radiation induced conductivity at low flux regime. During neutron irradiation, a significant transient decrease in insulation resistance is observed which recovers relative higher value just after neutron exposure is switched off. XRD results of 14 MeV neutron irradiated samples suggest annealing effect. Impact of relatively low energy neutrons on the structural properties is also studied using Am-Be neutrons. In this case, clustering is observed on the sample surface after prolonged neutron exposure. The structural characterizations of pristine and irradiated Al2O3 samples are performed using XRD, SEM, and EDX. The results from these characterizations are analysed and interpreted in the manuscript.

SPECTRUM WEIGHTED RESPONSES OF SEVERAL DETECTORS IN MIXED FIELDS OF FAST AND THERMAL NEUTRONS

  • Kim, Sang In;Chang, Insu;Kim, Bong Hwan;Kim, Jang Lyul;Lee, Jung Il
    • Nuclear Engineering and Technology
    • /
    • v.46 no.2
    • /
    • pp.273-280
    • /
    • 2014
  • The spectrum weighted responses of various detectors were calculated to provide guidance on the proper selection and use of survey instruments on the basis of their energy response characteristics on the neutron fields. To yield the spectrum weighted response, the detector response functions of 17 neutron-measuring devices were numerically folded with each of the produced calibration neutron spectra through the in-house developed software 'K-SWR'. The detectors' response functions were taken from the IAEA Technical Reports Series No. 403 (TRS-403). The reference neutron fields of 21 kinds with 2 spectra groups with different proportions of thermal and fast neutrons have been produced using neutrons from the $^{241}Am$-Be sources held in a graphite pile, a bare $^{241}Am$-Be source, and a DT neutron generator. Fluence-average energy ($E_{ave}$) varied from 3.8 MeV to 16.9 MeV, and the ambient-dose-equivalent rate [$H^*(10)/h$] varied from 0.99 to 16.5 mSv/h.

Development of a DDA+PGA-combined non-destructive active interrogation system in "Active-N"

  • Kazuyoshi Furutaka;Akira Ohzu;Yosuke Toh
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4002-4018
    • /
    • 2023
  • An integrated neutron interrogation system has been developed for non-destructive assay of highly-radioactive special nuclear materials, to accumulate knowledge of the method through developing and using it. The system combines a differential die-away (DDA) measurement system for the quantification of nuclear materials and a prompt gamma-ray analysis (PGA) system for the detection of neutron poisons which disturb the DDA measurements; a common D-T neutron generator is used. A special care has been taken for the selection of materials to reduce the background gamma rays produced by the interrogation neutrons. A series of measurements were performed to test the basic performance of the system. The results show that the DDA system can quantify plutonium of as small as 20 mg and it is not affected by intense neutron background up to 1.57 × 107 s-1 and gamma ray of 4.43 × 1010 s-1. The gamma-ray background counting rate at the PGA detector was reduced down to 3.9 × 103 s-1 even with the use of the D-T neutron generator. The test measurements show that the PGA system is capable of detecting 0.783 g of boron and about 86.8 g of gadolinium in 30 min.