DOI QR코드

DOI QR Code

Experimental study of the influence of borehole parameters on prompt fission neutron uranium logging and its corrections

  • Pengfei Zhou (School of Electrical Engineering, University of South China) ;
  • Bin Tang (Engineering Research Center of Nuclear Technology Application, Ministry of Education, East China University of Technology)
  • 투고 : 2023.12.12
  • 심사 : 2024.03.06
  • 발행 : 2024.08.25

초록

In prompt fission neutron uranium logging, borehole environmental parameters affect the measured results and must be corrected. In order to explore the influence of borehole parameters on the interpretation of logging results, this paper builds a sandstone type uranium ore block model to simulate the field production drilling device based on the "Epithermal/Thermal neutron counting rate ratio" (E/T) theory. The effects of borehole diameter, thickness of iron tube and well fluid on the decay rate of epithermal and thermal neutrons and their uncertainty correction methods were investigated. The results show that the effect of borehole diameter on E/T is negligible. The iron tube thickness has a certain effect on the moderation and absorption of epithermal and thermal neutrons, and its E/T increases slightly with increasing thickness. The influence of iron tube thickness on E/T is corrected and the relative uncertainty is less than 5%. The well fluid thickness also affects the decay rate of epithermal and thermal neutrons, and its E/T follows the law of negative exponential attenuation. The influence of well fluid thickness on E/T is corrected and the relative uncertainty is less than 5%. This study provides technical guidance for field well survey of uranium deposit.

키워드

과제정보

This work was supported by the National Natural Science Foundation of China (No.12075055), State Administration of Science, Technology and Industry for National Defence "13th Five-Year Plan" nuclear energy development and research project (No.20201192). Furthermore, we are very grateful for the support of Airborne Survey and Remote Sensing Centre of Nuclear Industry.

참고문헌

  1. Y. Ge, W. Wu, R. Wang, X. Fu, L. He, Thermal neutron cross section logging based on compensated neutron logging, Appl. Radiat. Isot. 166 (2020) 109317.
  2. C. Wang, Z. Ye, X. Meng, Research and application of nuclear magnetic logging in horizontal well of Jimsar shale oil block, Petroleum tubing and instruments 8 (2022) 69-72.
  3. D. Wang, S. Yu, X. Huang, Review and ProsPect of gamma logging technology in China, Uranium Geol. 39 (2023) 124-132.
  4. B. Tang, Y. Wu, X. Zhang, H. Wang, R. Wang, S. Zhou, R. Chen, Q. Liu, Direct uranium quantitative detection in high precision γ-logging by 1.001 MeV 234mpa y-ray, Nucl. Tech. 35 (2012) 745-750.
  5. J. Liu, H. Wu, F. Zhang, S. Liu, Z. Liu, H. Yan, Improvement in the method for borehole caliper measurement based on azimuthal gamma-gamma density well logging, Appl. Radiat. Isot. 145 (2019) 68-72.
  6. A. Jan Czubek, Pulsed neutron method for uranium well logging, Geophysics 37 (1971) 160.
  7. B. Tang, Study and Application on γ Field Theory of Borehole and Methods of Subdivision Interpretation for Nuclear Logging, Chengdu Univerisity of Technology, 2008.
  8. B. Tang, R. Wang, S. Zhou, X. Zhang, H. Wang, R. Chen, Z. Liu, Prompt Fission Neutron Logging and Quantitative Method of Uranium Ore Based on Epithermal Neutron Time Spectrum, 2017.
  9. Y. Lai, H. Wang, R. Chen, Real-time correction method of uranium mine caliper based on prompt neutron well logging, Nucl. Tech. 44 (2021) 55-59.
  10. H. Marten, H. Kalka, J. Krause, J. Nicolai, M.J. Zauner, Advanced In-Situ Leaching Technology for Uranium - from Innovative Exploration to Optimized Recovery, FOG - Freiberg Online Geoscience, 2015.
  11. B. Tang, Principles of Nuclear Radiation Measurement, Harbin Institute of Technology Press, 2011.
  12. N. Yang, Data correction and experimental study of neutron porosity logging using D-T source, Nucl. Tech. 43 (2020) 94-98.
  13. D.I. Yurkov, A.K. Dulatov, B.D. Lemeshko, A.V. Golikov, A.N. Selifanov, Pulsed neutron generators based on the sealed chambers of plasma focus design with D and DT fillings, J. Phys. Conf. 653 (2015) 012019.
  14. R. Chen, H. Wang, S. Zhou, B. Zhang, Environmental influencing factors in prompt fission neutron uranium logging based on Monte Carlo simulation, Nucl. Electron. Detect. Technol. 38 (2018) 823-827.
  15. Z. Feng, L. Tian, J. Liu, Q. Zhang, C. Qian, A Multidetectors Pulsed Neutron Logging Technology and its Application, Seg Technical Program Expanded Abstracts, 2016.
  16. D.R. Humphreys, R.W. Barnard, H.M. Bivens, D.H. Jensen, J.H. Weinlein, Uranium logging with prompt fission neutrons, Int. J. Appl. Radiat. Isot. 34 (1983) 261-268.
  17. B. Tang, R. Wang, S. Zhou, X. Zhang, H. Wang, R. Chen, Z. Liu, Uranium Fission Prompt Neutron Logging Technique Based on the Ratio of Epithermal Neutron to Thermal Neutron, 2016.
  18. Q. Zhang, F. Zhang, C. Yuan, R. Deng, G. Liu, Application analysis on the different neutron gamma density (NGD) logging methods, Appl. Radiat. Isot. 172 (2021) 109672.
  19. D.R. Humphreys, R.W. Barnard, H.M. Bivens, D.H. Jensen, W.A. Stephenson, J. H. Weinlein, Uranium logging with prompt fission neutrons, Int. J. Appl. Radiat. Isot. 34 (1983) 261-268.
  20. R.P. Gardner, A. Sood, On the future of Monte Carlo simulation for nuclear logs, Appl. Radiat. Isot. 68 (2010) 932-935.
  21. R. Penney, C. Ames, D. Quinn, A. Ross, Determining uranium concentration in boreholes using wireline logging techniques: comparison of gamma logging with prompt fission neutron technology (PFN), B. Appl. Earth Sci. 121 (2012) 89-95.