DOI QR코드

DOI QR Code

Role and Utilization of Carbon Nanotubes in LIB and Next-generation Secondary Batteries

LIB 및 차세대 이차전지에서의 탄소나노튜브 역할과 활용

  • Hyun Woo Kim (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Jeong Seob Kim (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Young Joon Park (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Seung Jae Yang (Department of Chemistry and Chemical Engineering, Inha University)
  • 김현우 (인하대학교 화학공학과) ;
  • 김정섭 (인하대학교 화학공학과) ;
  • 박영준 (인하대학교 화학공학과) ;
  • 양승재 (인하대학교 화학공학과)
  • Received : 2024.06.27
  • Accepted : 2024.08.15
  • Published : 2024.08.31

Abstract

As the demand for energy continues to increase, extensive research into various energy storage devices is actively being conducted. Particularly, lithium-ion battery (LIB) is widely used in diverse fields, from small electronics to automobiles, due to their high voltage and energy density. Significant efforts are being made to enhance battery performance by incorporating materials with superior properties. Carbon nanotubes (CNTs) are considered highly suitable materials due tox their excellent electrical and mechanical properties, as well as their physicochemical stability. Additionally, CNTs can be transformed into various forms such as fibers and films, enabling their application in various battery components, including conductive additives, current collectors, and active materials. This study summarizes the utilization of CNTs in LIB systems. We review the roles and performance enhancement effects of CNTs in various components of LIB. Through this comprehensive review, we aim to establish guidelines for the future application of CNTs in energy storage and conversion systems, thereby accelerating the progress of high-performance LIB. The insights gained from this study are expected to elucidate the potential for the commercialization and practical application of CNT-incorporated LIB, contributing to progress in the fields of portable electronics, electric vehicles, and grid energy storage solutions.

Keywords

Acknowledgement

본 연구는 산업통상자원부 소재부품기술개발사업(세부과제번호 20017548), 산업통상자원부 전략핵심소재자립화기술개발 사업(세부과제번호 20010853)의 지원을 받아 수행된 과제로 이에 감사드립니다.

References

  1. S. Yoda and K. Ishihara, "The Advent of Battery-based Societies and the Global Environment in the 21st Century", J. Power Sources, 1999, 81, 162-169.
  2. G. E. Blomgren, "The Development and Future of Lithium Ion Batteries", J. Electrochem. Soc., 2016, 164, A5019.
  3. B. Diouf and R. Pode, "Potential of Lithium-ion Batteries in Renewable Energy", Renew. Energy, 2015, 76, 375-380.
  4. W. Kraft, V. Stahl, and P. Vetter, "Thermal Storage Using Metallic Phase Change Materials for Bus Heating-state of the Art of Electric Buses and Requirements for the Storage System", Energies, 2020, 13, 3023.
  5. S. Choi and G. Wang, "Advanced Lithium-ion Batteries for Practical Applications: Technology, Development, and Future Perspectives", Adv. Mater. Technol., 2018, 3, 1700376.
  6. S. Jenu, I. Deviatkin, A. Hentunen, M. Myllysilta, S. Viik, and M. Pihlatie, "Reducing the Climate Change Impacts of Lithium-ion Batteries by Their Cautious Management Through Integration of Stress Factors and Life Cycle Assessment", J. Energy Storage, 2020, 27, 101023.
  7. R. Cappabianca, P. De Angelis, M. Fasano, E. Chiavazzo, and P. Asinari, "An Overview on Transport Phenomena Within Solid Electrolyte Interphase and Their Impact on the Performance and Durability of Lithium-ion Batteries", Energies, 2023, 16, 5003.
  8. J. Xiang, Y. Wei, Y. Zhong, Y. Yang, H. Cheng, L. Yuan, H. Xu, and Y. Huang, "Building Practical High-voltage Cathode Materials for Lithium-ion Batteries", Adv. Mater., 2022, 34, 2200912.
  9. Y. K. Lee, "The Effect of Active Material, Conductive Additives, and Binder in a Cathode Composite Electrode on Battery Performance", Energies, 2019, 12, 658.
  10. P. He, H. Yu, and H. Zhou, "Layered Lithium Transition Metal Oxide Cathodes Towards High Energy Lithium-ion Batteries", J. Mater. Chem., 2012, 22, 3680-3695.
  11. M. S. Whittingham, "Lithium Batteries and Cathode Materials", Chem. Rev., 2004, 104, 4271-4302.
  12. M. Zhang, N. Garcia-Araez, and A. L. Hector, "Understanding and Development of Olivine LiCoPO4 Cathode Materials for Lithium-ion Batteries", J. Mater. Chem. A, 2018, 6, 14483-14517.
  13. N. Recham, J.-N. Chotard, L. Dupont, C. Delacourt, W. Walker, M. Armand, and J.-M. Tarascon, "A 3.6 V lithium-based Fluorosulphate Insertion Positive Electrode for Lithium-ion Batteries", Nat. Mater., 2010, 9, 68-74.
  14. M. S. Whittingham, "Electrical Energy Storage and Intercalation Chemistry", Science, 1976, 192, 1126-1127.
  15. M. Ghiji, V. Novozhilov, K. Moinuddin, P. Joseph, I. Burch, B. Suendermann, and G. Gamble, "A Review of Lithium-ion Battery Fire Suppression", Energies, 2020, 13, 5117.
  16. T. M. Higgins, S.-H. Park, P. J. King, C. Zhang, N. McEvoy, N. C. Berner, D. Daly, A. Shmeliov, U. Khan, and G. Duesberg, "A Commercial Conducting Polymer as Both Binder and Conductive Additive for Silicon Nanoparticle-based Lithium-ion Battery Negative Electrodes", ACS Nano, 2016, 10, 3702-3713.
  17. E. Buiel and J. Dahn, "Li-insertion in Hard Carbon Anode Materials for Li-ion Batteries", Electrochim. Acta, 1999, 45, 121-130.
  18. H. Zhang, Y. Yang, D. Ren, L. Wang, and X. He, "Graphite as Anode Materials: Fundamental Mechanism, Recent Progress and Advances", Energy Storage Mater., 2021, 36, 147-170.
  19. J. Hassoun, F. Bonaccorso, M. Agostini, M. Angelucci, M. G. Betti, R. Cingolani, M. Gemmi, C. Mariani, S. Panero, and V. Pellegrini, "An Advanced Lithium-ion Battery Based on a Graphene Anode and a Lithium Iron Phosphate Cathode", Nano Lett., 2014, 14, 4901-4906.
  20. C. De las Casas and W. Li, "A Review of Application of Carbon Nanotubes for Lithium Ion Battery Anode Material", J. Power Sources, 2012, 208, 74-85.
  21. Y. Guo, H. Li, and T. Zhai, "Reviving Lithium-metal Anodes for Next-generation High-energy Batteries", Adv. Mater., 2017, 29, 1700007.
  22. C. Zhang, F. Wang, J. Han, S. Bai, J. Tan, J. Liu, and F. Li, "Challenges and Recent Progress on Silicon-based Anode Materials for Next-generation Lithium-ion Batteries", Small Struc., 2021, 2, 2100009.
  23. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, and J. Zhang, "A Review of Electrolyte Materials and Compositions for Electrochemical Supercapacitors", Chem. Soc. Rev., 2015, 44, 7484-7539.
  24. Q. Wang, L. Jiang, Y. Yu, and J. Sun, "Progress of Enhancing the Safety of Lithium Ion Battery from the Electrolyte Aspect", Nano Energy, 2019, 55, 93-114.
  25. Y. Chen, K. Wen, T. Chen, X. Zhang, M. Armand, and S. Chen, "Recent Progress in All-solid-state Lithium Batteries: The Emerging Strategies for Advanced Electrolytes and Their Interfaces", Energy Storage Mater., 2020, 31, 401-433.
  26. Y. Hu, X. Xie, W. Li, Q. Huang, H. Huang, S.-M. Hao, L.-Z. Fan, and W. Zhou, "Recent Progress of Polymer Electrolytes for Solid-state Lithium Batteries", ACS Sustain. Chem. Eng., 2023, 11, 1253-1277.
  27. M. J. Lain and E. Kendrick, "Understanding the Limitations of Lithium Ion Batteries at High Rates", J. Power Sources, 2021, 493, 229690.
  28. C. Qiu, G. He, W. Shi, M. Zou, and C. Liu, "The Polarization Characteristics of Lithium-ion Batteries under Cyclic Charge and Discharge", J. Solid State Electrochem., 2019, 23, 1887-1902.
  29. C. Heubner, M. Schneider, and A. Michaelis, "Diffusion-limited C-rate: A Fundamental Principle Quantifying the Intrinsic Limits of Li-ion Batteries", Adv. Energy Mater., 2020, 10, 1902523.
  30. L. Yu, X. Zhou, L. Lu, X. Wu, and F. Wang, "Recent Developments of Nanomaterials and Nanostructures for High-Rate Lithium Ion Batteries", ChemSusChem, 2020, 13, 5361-5407.
  31. M. Dresselhaus, G. Dresselhaus, and A. Jorio, "Unusual Properties and Structure of Carbon Nanotubes", Annu. Rev. Mater. Res., 2004, 34, 247-278.
  32. G. Chen, D. N. Futaba, S. Sakurai, M. Yumura, and K. Hata, "Interplay of Wall Number and Diameter on the Electrical Conductivity of Carbon Nanotube Thin Films", Carbon, 2014, 67, 318-325.
  33. S. Jiang, P.-X. Hou, M.-L. Chen, B.-W. Wang, D.-M. Sun, D.-M. Tang, Q. Jin, Q.-X. Guo, D.-D. Zhang, and J.-H. Du, "Ultrahigh-performance Transparent Conductive Films of Carbon-welded Isolated Single-wall Carbon Nanotubes", Sci. Adv., 2018, 4, eaap9264.
  34. H. Wang, Y. Yuan, L. Wei, K. Goh, D. Yu, and Y. Chen, "Catalysts for Chirality Selective Synthesis of Single-walled Carbon Nanotubes", Carbon, 2015, 81, 1-19.
  35. Y. Liao, Z. Zhang, Q. Zhang, N. Wei, S. Ahmad, Y. Tian, and E. I. Kauppinen, "Single-walled Carbon Nanotube Thin Film with High Semiconducting Purity by Aerosol Etching Toward Thin-film Transistors", ACS Appl. Nano Mater., 2021, 4, 9673-9679.
  36. J. H. Lehman, M. Terrones, E. Mansfield, K. E. Hurst, and V. Meunier, "Evaluating the Characteristics of Multiwall Carbon Nanotubes", Carbon, 2011, 49, 2581-2602.
  37. P. Avouris, J. Appenzeller, R. Martel, and S. J. Wind, "Carbon Nanotube Electronics", Proc. IEEE, 2003, 91, 1772-1784.
  38. C. Espindola, A. J. Correa, M. Lopez-Lopez, P. Lopez-Cornejo, E. Bernal, J. A. Lebron, F. J. Ostos, M. R. E. I. Benhnia, and M. L. Moya, "Single- and Multi-Walled Carbon Nanotubes as Nanocarriers for the Delivery of 7-Hydroxyflavone", Pharmaceutics, 2022, 14, 2806.
  39. K. E. Moore, D. D. Tune, and B. S. Flavel, "Double-walled Carbon Nanotube Processing", Adv. Mater., 2015, 27, 3105-3137.
  40. A. B. Al Tahhan, M. Alkhedher, A. H. I. Mourad, M. Ramadan and J. M. Nawash, "Effect of Induced Vacancy Defects on the Mechanical Behavior of Wavy Single-walled Carbon Nanotubes", Nano Trends, 2023, 3, 100016.
  41. X. Wei, Q. Chen, L. M. Peng, R. Cui, and Y. Li, "Tensile Loading of Double-walled and Triple-walled Carbon Nanotubes and Their Mechanical Properties", J. Phys. Chem. C, 2009, 113, 17002-17005.
  42. M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, "Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes under Tensile Load", Science, 2000, 287, 637-640.
  43. W. Qi, F.-Y. Su, Z.-Y. Tang, G.-W. Ling, and Q.-H. Yang, "Synergetic Effect of Conductive Additives on the Performance of High Power Lithium Ion Batteries", New Carbon Mater., 2012, 27, 427-432.
  44. J. H. Kim, S. Kim, J. H. Han, S. B. Seo, Y. R. Choi, J. Lim, and Y. A. Kim, "Perspective on Carbon Nanotubes as Conducting Agent in Lithium-ion Batteries: The Status and Future Challenges", Carbon Lett., 2023, 33, 325-333.
  45. C. Ding, C. Shao, W. Songsong, Y. Ma, Y. Liu, S. Ma, X. Hu, Z. Cao, X. Ren, and B. Zhong, "A Review of 1D Carbon-based Materials Assembly Design for Lightweight Microwave Absorption", Carbon, 2023, 213, 118279.
  46. S. Jessl, D. Beesley, S. Engelke, C. J. Valentine, J. C. Stallard, N. Fleck, S. Ahmad, M. T. Cole, and M. De Volder, "Carbon Nanotube Conductive Additives for Improved Electrical and Mechanical Properties of Flexible Battery Electrodes", Mater. Sci. Eng. A, 2018, 735, 269-274.
  47. Z. Wang and S. Mitra, "Development of Flexible Secondary Alkaline Battery with Carbon Nanotube Enhanced Electrodes", J. Power Sources, 2014, 266, 296-303.
  48. J. H. Choi, S. Y. Choi, T. J. Embleton, K. M. Ko, K. S. Saqib, J. Ali, M. N. Jo, J. H. Hwang, S. W. Park, M. H. Kim, M. G. Hwang, H. S. Lim, and P. G. Oh, "The Effect of Conductive Additive Morphology and Crystallinity on the Electrochemical Performance of Ni-Rich Cathodes for Sulfide All-Solid-State Lithium-Ion Batteries", Nanomater, 2023, 13, 3065.
  49. Q. Cao, Q. Yu, D. W. Connell, and G. Yu, "Titania/carbon Nanotube Composite (TiO2/CNT) and Its Application for Removal of Organic Pollutants", Clean Technol. Environ. Policy, 2013, 15, 871-880.
  50. D. Pantea, H. Darmstadt, S. Kaliaguine, L. Summchen, and C. Roy, "Electrical Conductivity of Thermal Carbon Blacks: Influence of Surface Chemistry", Carbon, 2001, 39, 1147-1158.
  51. S. Yoshihara, H. Katsuta, H. Isozumi, M. Kasai, K. Oyaizu, and H. Nishide, "Designing Current Collector/composite Electrode Interfacial Structure of Organic Radical Battery", J. Power Sources, 2011, 196, 7806-7811.
  52. H. Wang, J. Fu, C. Wang, J. Wang, A. Yang, C. Li, Q. Sun, Y. Cui, and H. Li, "A Binder-free High Silicon Content Flexible Anode for Li-ion Batteries", Energy & Environ. Sci., 2020, 13, 848-858.
  53. T. M. Tekaligne, S. K. Merso, S.-C. Yang, S.-C. Liao, F.-Y. Tsai, F. W. Fenta, H. K. Bezabih, K. N. Shitaw, S.-K. Jiang, and C.-H. Wang, "Corrosion Inhibition of Aluminum Current Collector by a Newly Synthesized 5-formyl-8-hydroxyquinoline for Aqueous-based Battery", J. Power Sources, 2022, 550, 232142.
  54. J. Mao, C. Wang, Y. Lyu, R. Zhang, Y. Wang, S. Liu, Z. Wang, S. Zhang, and Z. Guo, "Organic Electrolyte Design for Practical Potassium-ion Batteries", J. Mater. Chem. A, 2022, 10, 19090-19106.
  55. H. R. Kim and W. M. Choi, "Graphene Modified Copper Current Collector for Enhanced Electrochemical Performance of Li-ion Battery", Scripta Mater., 2018, 146, 100-104.
  56. W. Yuan, Z. Qiu, Y. Chen, B. Zhao, M. Liu, and Y. Tang, "A Binder-free Composite Anode Composed of CuO Nanosheets and Multi-wall Carbon Nanotubes for High-performance Lithium-ion Batteries", Electrochim. Acta, 2018, 267, 150-160.
  57. W. Luo, J. Hayden, S. H. Jang, Y. Wang, Y. Zhang, Y. Kuang, Y. Wang, Y. Zhou, G. W. Rubloff, and C. F. Lin, "Highly Conductive, Light Weight, Robust, Corrosion-Resistant, Scalable, All-Fiber Based Current Collectors for Aqueous Acidic Batteries", Adv. Energy Mater., 2018, 8, 1702615.
  58. L. K. Ventrapragada, J. Zhu, S. E. Creager, A. M. Rao, and R. Podila, "A Versatile Carbon Nanotube-based Scalable Approach for Improving Interfaces in Li-ion Battery Electrodes", ACS Omega, 2018, 3, 4502-4508.
  59. M. Shimizu, T. Ohnuki, T. Ogasawara, T. Banno, and S. Arai, "Electrodeposited Cu/MWCNT Composite-film: A Potential Current Collector of Silicon-based Negative-electrodes for Li-Ion Batteries", RSC Adv., 2019, 9, 21939-21945.
  60. L. Ventrapragada, S. Creager, A. Rao, and R. Podila, "Carbon Nanotubes Coated Paper as Current Collectors for Secondary Li-ion Batteries", Nanotechnol. Rev., 2019, 8, 18-23.
  61. D. U. Woo, Y. J. Park, J. Y. Cheon, K. B. Lee, Y. S. Jung, P. J. Kim, and T. H. Kim, "Development of Solid-state Hybrid Capacitor Using Carbon Nanotube Film as Current Collector", Funct. Compos. Struct., 2024, 6, 035003.
  62. S. M. Jo, K. B. Lee, Y. S. Jung, D. G. Woo, T. H. Kim, and P. J. Kim, "Direct-spun Carbon Nanotube Sheet: A Flexible, Ultralight, Stackable Three-dimensional Current Collector for High-performance Lithium-ion Batteries", Carbon, 2024, 219, 118786.
  63. N. Yitzhack, M. Auinat, N. Sezin, and Y. Ein-Eli, "Carbon Nanotube Tissue as Anode Current Collector for Flexible Li-ion Batteries-Understanding the Controlling Parameters Influencing the Electrochemical Performance", APL Mater. 2018, 6, 111102.
  64. H. Tukamoto and A. West, "Electronic Conductivity of LiCoO2 and Its Enhancement by Magnesium Doping", J. Electrochem. Soc., 1997, 144, 3164.
  65. L. Yan, K. Wang, S. Luo, H. Wu, Y. Luo, Y. Yu, K. Jiang, Q. Li, S. Fan, and J. Wang, "Sandwich-structured Cathodes with Cross-stacked Carbon Nanotube Films as Conductive Layers for High-performance Lithium-ion Batteries", J. Mater. Chem. A, 2017, 5, 4047-4057.
  66. S. Luo, K. Wang, J. Wang, K. Jiang, Q. Li, and S. Fan, "Binder-free LiCoO2/carbon Nanotube Cathodes for High-performance Lithium Ion Batteries", Adv. Mater., 2012, 24, 2294-2298.
  67. T. Takeuchi, H. Sakaebe, H. Kageyama, H. Senoh, T. Sakai, and K. Tatsumi, "Preparation of Electrochemically Active Lithium Sulfide-carbon Composites Using Spark-plasma-sintering Process", J. Power Sources, 2010, 195, 2928-2934.
  68. X. Ji and L. F. Nazar, "Advances in Li-S batteries", J. Mater. Chem., 2010, 20, 9821-9826.
  69. L. Sun, M. Li, Y. Jiang, W. Kong, K. Jiang, J. Wang, and S. Fan, "Sulfur Nanocrystals Confined in Carbon Nanotube Network as a Binder-free Electrode for High-performance Lithium Sulfur Batteries", Nano Lett., 2014, 14, 4044-4049.
  70. P. Y. E. Koraag, A. M. Firdaus, N. H. Hawari, A. D. Refino, W. Dempwolf, F. Iskandar, E. Peiner, H. S. Wasisto, and A. Sumboja, "Covalently Bonded Ball-Milled Silicon/CNT Nanocomposite as Lithium-Ion Battery Anode Material", Batteries, 2022, 8, 165.
  71. Y. Patel, A. Vanpariya, and I. Mukhopadhyay, "Si-decorated CNT Network as Negative Electrode for Lithium-ion Battery", J. Solid State Electrochem., 2023, 27, 501-510.
  72. L. Xue, G. Xu, Y. Li, S. Li, K. Fu, Q. Shi, and X. Zhang, "Carbon-coated Si Nanoparticles Dispersed in Carbon Nanotube Networks as Anode Material for Lithium-ion Batteries", ACS Appl. Mater. Interfaces, 2013, 5, 21-25.
  73. Z. Hu, S. Zhang, C. Zhang, and G. Cui, "High Performance Germanium-based Anode Materials", Coord. Chem. Rev., 2016, 326, 34-85.
  74. G. Cui, L. Gu, N. Kaskhedikar, P. A. van Aken, and J. Maier, "A Novel Germanium/carbon Nanotubes Nanocomposite for Lithium Storage Material", Electrochim. Acta, 2010, 55, 985-988.
  75. J. Hao, N. Li, X. Ma, X. Liu, X. Liu, Y. Li, and J. Zhao, "Ionic Liquid Electrodeposition of Germanium/carbon Nanotube Composite Anode Material for Lithium Ion Batteries", Mater. Lett., 2015, 144, 50-53.
  76. X. Yao, C. Tang, G. Yuan, P. Cui, X. Xu, and Z. Liu, "Porous Hematite (α-Fe2O3) Nanorods as an Anode Material with Enhanced Rate Capability in Lithium-ion Batteries", Electrochem. Commun., 2011, 13, 1439-1442.
  77. D. Yang, S. Xu, S. Dong, J. Liu, A. Guo, X. Yan, and F. Hou, "Facile Synthesis of Free-standing Fe2O3/carbon Nanotube Composite Films as High-performance Anodes for Lithium-ion Batteries", RSC Adv., 2015, 5, 106298-106306.
  78. Y. Jung, Y. C. Jeong, J. H. Kim, Y. S. Kim, T. Kim, Y. S. Cho, and C. R. Park, "One Step Preparation and Excellent Performance of CNT Yarn Based Flexible Micro Lithium Ion Batteries", Energy Storage Mater., 2016, 5, 1-7.
  79. D. Zhang, Y. Zhou, C. Liu, and S. Fan, "The Effect of the Carbon Nanotube Buffer Layer on the Performance of a Li Metal Battery", Nanoscale, 2016, 8, 11161-11167.
  80. H. J. Kim, J. S. Lim, and D. R. Chang, "High Performances of All-solid-state Battery with Designed Composite Cathode: An Effect of Conductive Binders with Single-walled Carbon Nanotube Additives", Int. J. Energy Res., 2021, 45, 11041-11052.
  81. M. Ryu, Y. K. Hong, S. Y. Lee, and J. H. Park, "Ultrahigh Loading Dry-process for Solvent-free Lithium-ion Battery Electrode Fabrication", Nat. Commun., 2023, 14, 1316.