DOI QR코드

DOI QR Code

Effect of Seawater Concentration on Electrochemical Corrosion of Duplex Stainless Steel

  • Ho-Seong Heo (SNNC) ;
  • Hyun-Kyu Hwang (Department of marine engineering, Graduate school, Mokpo national maritime University) ;
  • Dong-Ho Shin (Department of marine engineering, Graduate school, Mokpo national maritime University) ;
  • Seong-Jong Kim (Division of marine system engineering, Mokpo national maritime university)
  • Received : 2024.03.03
  • Accepted : 2024.03.12
  • Published : 2024.08.30

Abstract

Duplex stainless steels (UNS S32205, UNS S32750) are used in various environments. The potentiodynamic polarization tests were conducted at 30 ℃ in order to study the electrochemical corrosion behaviors of duplex stainless steels under different seawater concentrations (fresh water, seawater, mixed water). The results of Tafel analysis in seawater showed that UNS S32205 and UNS S32750 had the highest corrosion current densities at 6.12 × 10-4 mA/cm2 and 5.41 × 10-4 mA/cm2, respectively. The pitting potentials of UNS S32205 and UNS S32750 were comparable to or higher than the oxygen evolution potential in fresh water, mixed water, and seawater. The maximum damage depths and surface damage ratio caused by pitting corrosion increased with chloride concentration. The synergy effect of molybdenum and nitrogen enhances the concentration of Mo, Ni, and Cr at the interface of the metal-electrolyte. In particular, in the case of nitrogen, NH3 and NH4+ are formed to compensate for the pH drop in the pitting region, thereby strengthening the repassivation of the film. The excellent corrosion resistance of UNS S32750 is attributed to the strengthening effect of the chromium oxide film due to the presence of molybdenum and nitrogen.

Keywords

References

  1. H. K. Hwang, S. J Kim, Effect of Seawater Temperature on the Cyclic Potentiodynamic Polarization Characteristics and Microscopic Analysis on Damage Behavior of Super Austenitic Stainless Steel, Corrosion science and technology, 20, 412 (2021). Doi: https://doi.org/10.14773/cst.2021.20.6.412
  2. H. K. Hwang, S. J Kim, Investigation of the Electrochemical Characteristics of Electropolished Super Austenite Stainless Steel with Seawater Temperature, Corrosion science and technology, 22, 164 (2023). Doi: https://doi.org/10.14773/cst.2023.22.3.164
  3. M. H. Im, Cavitation Characteristics on Impeller Materials of Centrifugal Pump for Ship in Sea Water and Fresh Water, Corrosion science and technology, 10, 218 (2011). https://www.j-cst.org/opensource/pdfjs/web/pdf_viewer.htm?code=C00100600218 100600218
  4. H. Ezuber, A. El-Houd, and F. El-Shawesh, A study on the corrosion behavior of aluminum alloys in seawater, Materials & Design, 29, 801 (2008). Doi: https://doi.org/10.1016/j.matdes.2007.01.021
  5. R. Devaux, D. Vouagner, A. M. De Becdelievre and C. Duret-thual, Electrochemical and surfaces studies of the ageing of passive layers grown on stainless steel in neutral chloride solution, Corrosion Science, 36, 171 (1994). Doi: https://doi.org/10.1016/0010-938X(94)90118-X
  6. J. R. Davis ed., ASM Specialty Handbook Stainless Steels, p. 13, ASM International, OH (1994).
  7. J. D. Redmond, Materials Engineering, 27, 153 (1986).
  8. Bo Deng, Yiming Jiang, Jia Gong, Cheng Zhong, Juan Gao, Jin Li, Critical pitting and repassivation temperatures for duplex stainless steel in chloride solutions, Electrochimica Acta, 53, 5220 (2008). Doi: https://doi.org/10.1016/j.electacta.2008.02.047
  9. Heon-Young Ha, Tae-Ho Lee, Chang-Geun Lee, Hanme Yoon, Understanding the relation between pitting corrosion resistance and phase fraction of S32101 duplex stainless steel, Corrosion Science, 149, 226 (2019). Doi: https://doi.org/10.1016/j.corsci.2019.01.001
  10. TSAI Wen-Ta1, TSAI Kuen- Ming, L IN Chang-jian, FU Yan, Selective corrosion in duplex stainless steel, Journal of Electrochemistry, 9, 170 (2003). Doi: https://doi.org/10.61558/2993-074X.1501
  11. R. Sriram and D. Tromans, Pitting Corrosion of Duplex Stainless Steels, Corrosion, 45, 804 (1989). Doi: https://doi.org/10.5006/1.3584986
  12. R. Magnabosco and N. A. Falleiros, Pit Morphology and its Relation to Microstructure of 850℃ Aged Duplex Stainless Steel, Corrosion, 61, 130 (2005). Doi: https://doi.org/10.5006/1.3278167
  13. A. R. Brooks, C. R. Clayton, K. Doss, and Y. C. L, On the Role of Cr in the Passivity of Stainless Steel, Journal of The Electrochemical Society, 133, 2459 (1986). Doi: https://doi.org/10.1149/1.2108450
  14. M. Sakashita and N. Sato, The effect of molybdate anion on the ion-selectivity of hydrous ferric oxide films in chloride solutions, Corrosion Science, 17, 473 (1977). Doi: https://doi.org/10.1016/0010-938X(77)90003-8
  15. C. R. Clayton and Y. C. Lu, A Bipolar model of the Passivity of Stainless steel, Journal of The Electrochemical Society, 133, 2465 (1986). Doi: https://doi.org/10.1149/1.2108451
  16. Y. S. Cho, Effects of Mo Content and Ion-Nitriding on the Pitting Behavior of STS 304 Stainless Steel, pp. 6 - 7, Graduate School Chonnam National University (1994).
  17. K. W. Nam, J. E. Paeng and K. Y. Kim, Immersion Characteristics of STS316L with Degree of Different Cold Rolling, Journal of Power System Engineering, 24, 90 (2020). Doi: https://doi.org/10.9726/KSPSE.2020.24.3.090
  18. Y. S. Kim, Synergistic Effect of Nitrogen and Molybdenum on Localized Corrosion of Stainless Steels, Corrosion Science and Technology, 9, 20 (2010). https://www.j-cst.org/opensource/pdfjs/web/pdf_viewer.htm?code=C00090100020 100020
  19. Yu Zuo, Haitao Wang, Jingmao Zhao, Jinping Xiong, The effects of some anions on metastable pitting of 316L stainless steel, Corrosion Science, 22, 13 (2002). Doi: https://doi.org/10.1016/S0010-938X(01)00031-2