DOI QR코드

DOI QR Code

Bulk Heterojunction Solar Cell using Ru Dye Attached PCBM

  • Il-Su Park (Department of Materials Science and Engineering, Korea University) ;
  • Jae-Keun Hwang (Department of Materials Science and Engineering, Korea University) ;
  • Yongseok Jun (Graduate School of Energy and Environment, Korea University) ;
  • Donghwan Kim (Department of Materials Science and Engineering, Korea University)
  • 투고 : 2024.02.27
  • 심사 : 2024.04.09
  • 발행 : 2024.08.31

초록

Ru dye (Z-907) is a crucial photosensitizing material in dye-sensitized solar cells (DSSCs). To enhance the utilization of Ru dye's photosensitizing properties in bulk heterojunction solar cells, a method was developed to synthesize phenyl-C61-butyric acid methyl ester (PCBM) nanoparticles that are chemically linked to Ru dye. PCBM contains a methoxy (-OCH3) group, whereas Ru dye incorporates a carboxyl group (-COOH) within its molecular structure. By exploiting these complementary functional groups, a successful bond between Ru dye and PCBM was established through an anhydride functional group. The coupling of PCBM with Ru dye results in a modification of the energy levels, yielding lower LUMO (3.8 eV) and HOMO (6.1 eV) levels, compared with the LUMO (3.0 eV) and HOMO (5.2 eV) levels of Ru dye alone. This configuration potentially facilitates efficient electron transfer from Ru dye to PCBM, alongside promoting hole transfer from Ru dye to the conducting polymer. Consequently, the bulk heterojunction solar cells incorporating this Ru dye-PCBM configuration demonstrate superior performance, with an open circuit voltage (Voc) of 0.62 V, short circuit current (Jsc) of 0.63 mA cm-2, fill factor (FF) of 65.6%, and a photovoltaic conversion efficiency (η) of 0.25%.

키워드

과제정보

This work was supported by "Human Resources Program in Energy Technology" of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20204010600470). This work was also supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20213091010020).

참고문헌

  1. B. O'Regan and M. Gratzel, Nature, 1991, 353, 737-740.
  2. S. K. Balasingam, M. Lee, M. G. Kang, and Y. Jun, Chem. Commun., 2013, 49(15), 1471-1487.
  3. J. Kim, J. Lim, M. Kim, H. Lee, Y. Jun, and D. Kim, ACS Appl. Mater. Interfaces, 2014, 6(21), 18788-18794.
  4. M. M. Rahman, H. C. Kang, K. Yoo, and J.-J. Lee, J. Electrochem. Sci. Technol., 2022, 13(4), 453-461. 
  5. Y. Ko, W. Choi, Y. Kim, C. Lee, Y. Jun, and J. Kim, J. Electrochem. Sci. Technol., 2019, 10(3), 313-320. 
  6. H. Nam, Y. Ko, S. C. Kunnan, N.-S. Choi, and Y. Jun, J. Electrochem. Sci. Technol., 2019, 10(2), 214-222. 
  7. P. Prakash, and B. Janarthanan, Inorg. Chem. Commun., 2023, 152, 110638. 
  8. H. Gao, R. Yu, Z. Ma, Y. Gong, B. Zhao, Q. Lv, and Z. Tan, J. Polym. Sci., 2022, 60(6), 865-916. 
  9. B. Wang, N. Li, L. Yang, C. Dall'Agnese, A. K. Jena, T. Miyasaka, and X.-F. Wang, J. Am. Chem. Soc., 2021, 143(36), 14877-14883. 
  10. M. Gratzel, MRS Bulletin, 2005, 30(1), 23-27. 
  11. D. Joshy, S. B. Narendranath, Y. A. Ismail, and P. Periyat, Nanoscale Adv., 2022, 4(24), 5202-5232. 
  12. A. S. Najm, S. A. Alwash, N. H. Sulaiman, M. S. Chowdhury, and K. Techato, Environ. Prog. Sustain., 2023, 42(1), e13955. 
  13. N. Tomar, A. Agrawal, V. S. Dhaka, and P. K. Surolia, Sol. Energy, 2020, 207, 59-76. 
  14. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science, 1995, 270(5243), 1789-1791. 
  15. G. Conturbia, R. D. G. Vinhas, R. Landers, G. M. S. Valente, V. Baranauskas, and A. F. Nogueira, J. Nanosci. Nanotechnol., 2009, 9(10), 5850-5859. 
  16. S. A. Backer, K. Sivula, D. F. Kavulak, and J. M. J. Frechet, Chem. Mater., 2007, 19(12), 2927-2929. 
  17. G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nature Mater., 2005, 4(11), 864-868. 
  18. M. Reyes-Reyes, K. Kim, and D. L. Carroll, Appl. Phys. Lett., 2005, 87(8), 083506. 
  19. C. Klein, Md. K. Nazeeruddin, D. Di Censo, P. Liska, and M. Gratzel, Inorg. Chem., 2004, 43(14), 4216-4226. 
  20. S. Yanagida, Y. H. Yu, and K. Manseki, Acc. Chem. Res., 2009, 42(11), 1827-1838. 
  21. T. Mede, M. Jager, and U. S. Schubert, Chem. Soc. Rev., 2018, 47(20), 7577-7627. 
  22. S. Shalini, R. Balasundaraprabhu, T. S. Kumar, N. Prabavathy, S. Senthilarasu, and S. Prasanna, Int. J. Energy Res., 2016, 40(10), 1303-1320. 
  23. T. Y. Lee and J. B. Yoo, Diam. Relat. Mater., 2005, 14(11-12), 1888-1890. 
  24. S. Yanagida, G. K. R. Senadeera, K. Nakamura, T. Kitamura, and Y. Wada, J. Photoch. Photobio. A, 2004, 166(1-3), 75-80. 
  25. S.-R. Jang, R. Vittal, and K.-J. Kim, Langmuir, 2004, 20(22), 9807-9810. 
  26. J. Bisquert, M. Gratzel, Q. Wang, and F. Fabregat-Santiago, J. Phys. Chem. B, 2006, 110(23), 11284-11290.