• Title/Summary/Keyword: Bulk heterojunction solar cells

Search Result 52, Processing Time 0.031 seconds

Phophorus External Gettering for High Quality Wafer of Silicon Heterojunction Solar Cells

  • Park, Hyo-Min;Tak, Seong-Ju;Kim, Chan-Seok;Park, Seong-Eun;Kim, Yeong-Do;Kim, Dong-Hwan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.43.2-43.2
    • /
    • 2011
  • Minority Carrier recombination should be suppressed for high efficiency solar cells. However, impurities in the silicon bulk region deteriorate the minority carrier lifetimes, causes conversion efficiency drop. In this study, we introduced phosphorus external gettering for silicon heterojunction solar cell substrates. Gettering was undergone at 750, 800, 850 and $900^{\circ}C$ in furnace for 30 minutes. Bulk lifetimes and calculated diffusion length were improved. We applied phosphorus gettering to silicon heterojunction solar cells. Gettered group and ungettered group were used as substrate of silicon heterojunction solar cells. After fabrication, characteristics of solar cells were analyzed. The results were observed to see the enhancement of substrate quality which directly connects with solar cell properties.

  • PDF

Influence of Physical Load on the Stability of Organic Solar Cells with Polymer : Fullerene Bulk Heterojunction Nanolayers

  • Lee, Sooyong;Kim, Hwajeong;Kim, Youngkyoo
    • Current Photovoltaic Research
    • /
    • v.4 no.2
    • /
    • pp.48-53
    • /
    • 2016
  • We report the effect of physical load on the stability of organic solar cells under physical loads. The active layers in organic solar cells were fabricated with bulk heterojunction films (BHJ) films of poly (3-hexylthiophene) and phenyl-$C_{61}$-butyric methyl ester. The loading time was varied up to 60 s by keeping the physical load constant. Results showed that the open circuit voltage was not influenced by the physical load but other solar cell parameters were sensitive to the loading time. The fill factor was very slightly increased at 15 s, while short circuit current density was well kept for 30 s. The power conversion efficiency was reasonably maintained for 45 s but became significantly decreased by the continuous loading for 60 s.

Bulk Heterojunction Solar Cell using Ru Dye Attached PCBM

  • Il-Su Park;Jae-Keun Hwang;Yongseok Jun;Donghwan Kim
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.421-426
    • /
    • 2024
  • Ru dye (Z-907) is a crucial photosensitizing material in dye-sensitized solar cells (DSSCs). To enhance the utilization of Ru dye's photosensitizing properties in bulk heterojunction solar cells, a method was developed to synthesize phenyl-C61-butyric acid methyl ester (PCBM) nanoparticles that are chemically linked to Ru dye. PCBM contains a methoxy (-OCH3) group, whereas Ru dye incorporates a carboxyl group (-COOH) within its molecular structure. By exploiting these complementary functional groups, a successful bond between Ru dye and PCBM was established through an anhydride functional group. The coupling of PCBM with Ru dye results in a modification of the energy levels, yielding lower LUMO (3.8 eV) and HOMO (6.1 eV) levels, compared with the LUMO (3.0 eV) and HOMO (5.2 eV) levels of Ru dye alone. This configuration potentially facilitates efficient electron transfer from Ru dye to PCBM, alongside promoting hole transfer from Ru dye to the conducting polymer. Consequently, the bulk heterojunction solar cells incorporating this Ru dye-PCBM configuration demonstrate superior performance, with an open circuit voltage (Voc) of 0.62 V, short circuit current (Jsc) of 0.63 mA cm-2, fill factor (FF) of 65.6%, and a photovoltaic conversion efficiency (η) of 0.25%.

Hybrid Solar Cells with Polymer/Fullerene Bulk Heterojunction Layers Containing in-situ Synthesized CdS Nanocrystals

  • Kwak, Eunjoo;Woo, Sungho;Kim, Hwajeong;Kim, Youngkyoo
    • Current Photovoltaic Research
    • /
    • v.2 no.4
    • /
    • pp.152-156
    • /
    • 2014
  • We report hybrid solar cells fabricated with polymer/fullerene bulk heterojunction layers that contain inorganic nanocrystals synthesized by in-situ reaction in the presence of polymer chains. The inorganic (cadmium sulfide) nanocrystal ($CdS_{NC}$) was generated by the reaction of cadmium acetate and sulfur by varying the reaction time up to 30 min. The synthesized $CdS_{NC}$ showed a rectangular flake shape, while the size of $CdS_{NC}$ reached ca. 150 nm when the reaction time was 10 min. The performance of hybrid solar cells with $CdS_{NC}$ synthesized for 10 min was better than that of a control device, whereas poor performances were measured for other hybrid solar cells with $CdS_{NC}$ synthesized for more than 10 min.

Bulk Heterojunction Organic Photovoltaics- Nano Morphology Control and Interfacial Layers

  • Kim, Gyeong-Gon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.59.2-59.2
    • /
    • 2012
  • Polymer solar cells utilize bulk heterojunction (BHJ) type photo-active layer in which the electron donating polymer and electron accepting $C_{60}$ derivatives are blended. We found there is significant charge recombination at the interface between the BHJ active layer and electrode. The charge recombination at the interface was effectively reduced by inserting wide band gap inorganic interfacial layer, which resulted in efficiency and stability enhancement of BHJ polymer solar cell.

  • PDF

Impact of Cyano and Fluorine Group Functionalization on the Optoelectronic and Photovoltaic Properties of Donor-Acceptor-π-Acceptor Benzothiadiazole Derived Small Molecules: A DFT and TD-DFT Study

  • Prabhat Gautam;Anurag Gautam;Neeraj Kumar
    • Korean Journal of Materials Research
    • /
    • v.33 no.6
    • /
    • pp.236-241
    • /
    • 2023
  • Solar cells based on p-conjugated donor-acceptor (D-A) organic molecular systems are a promising alternative to conventional electrical energy generation. D-A molecular systems, which have a triphenylamine (TPA) moiety linked with a benzothiadiazole (BTD) moiety, open the potential development of new small molecule donors for bulk heterojunction (BHJ) solar cells. Here, a series of donor-acceptor-π-acceptor (D-A-π-A) small molecule donors (SMD) derived from triphenylamine (TPA) donor and benzothiadiazole (BTD) acceptor building blocks, were designed for BHJ organic solar cells. The small molecule donors SMD1-4 were studied using density functional theory (DFT) and time dependent-DFT (TDDFT) methods, to understand the effect of cyano and fluorine group functionalization on their properties. The effect of structure alteration by cyano and fluorine group functionalization on the optoelectronic properties, the calculated highest occupied molecular orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs) and the HOMO-LUMO gaps were theoretically explored. The Voc (open-circuit photovoltage) and fill factor (FF) for SMD1-4 were obtained with a PC71BM acceptor, which showed that these organic small molecules are potential small molecule donors for organic bulk heterojunction solar cells.

Effects of Fused Thiophene Bridges in Organic Semiconductors for Solution-Processed Small-Molecule Organic Solar Cells

  • Lee, Jae Kwan;Lee, Sol;Yun, Suk Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2148-2154
    • /
    • 2013
  • Three push-pull organic semiconductors, TPA-$Th_3$-MMN (1), TPA-ThTT-MMN (2), and TPA-ThDTT-MMN (3), comprising a triphenylamine donor and a methylene malononitrile acceptor linked by various ${\pi}$-conjugated thiophene units were synthesized, and the effects of the ${\pi}$-conjugated bridging unit on the photovoltaic characteristics of solution-processed small-molecule organic solar cells based on these semiconductors were investigated. Planar bridging units with extended ${\pi}$-conjugation effectively facilitated intermolecular ${\pi}-{\pi}$ packing interactions in the solid state, resulting in enhanced $J_{sc}$ values of the SMOSCs fabricated with bulk heterojunction films.

Correlation Between Crystal Structure and Properties in Polymer Solar Cells (고분자 태양전지의 결정구조와 특성의 상관성)

  • Kim, Jung Yong
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.88-93
    • /
    • 2008
  • The bulk-heterojunction polymer solar cell based on regioregular P3HT (poly(3-hexylthiophene)) and PCBM (methanofullerene [6,6]-phenyl $C_{61}$-butyric acid methyl ester) was fabricated. Annealing effects on the crystal structure of polymer-fullerene blends as well as the UV-VIS electronic absorption spectroscopy were investigated. The correlation between the crystal organization of bulk-heterojunction film and the power conversion efficiency of solar cell was studied. Resultantly, the polymer solar cell annealed on $150^{\circ}C$ for 30 min, showed both the enhanced molecular interactions and the optimized crystal structure and displayed the power conversion efficiency of 3.2 %.

The Study on the the P3HT:PCBM Bulk Heterojunction Solar Cells Utilizing $WO_3$ Nano-particle As a Hole Transporting Layer

  • Choe, Ha-Na;Kim, Seong-Hyeon;Kim, Gyeong-Gon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.321-321
    • /
    • 2010
  • The PEDOT:PSS layer is usually used as hole transporting layer for the polymer bulk heterojunction solar cells. However, the interface between ITO and PEDOT:PSS is not stable and the chemical reaction between ITO and PEDOT can result in degraded device performance. We used the tungsten oxides as a hole transport layer by spin-coating. The $WO_3$ nanoparticles were well dispersed in ammonium hydroxide and deionized water and formed thin layer on the ITO anode. We found that $WO_3$ surface is more hydrophobic than the bare ITO or PEDOT:PSS-coated surfaces. The hydrophobic surfaces promote an ordered growth of P3HT films. A higher degree of P3HT ordering is expected to improve the hole mobility and the lifetime of the device using the tungsten oxide showed better stability compared to the device using the PEDOT:PSS.

  • PDF

Hydrogenated Amorphous Silicon Thin Films as Passivation Layers Deposited by Microwave Remote-PECVD for Heterojunction Solar Cells

  • Jeon, Min-Sung;Kamisako, Koichi
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.3
    • /
    • pp.75-79
    • /
    • 2009
  • An intrinsic silicon thin film passivation layer is deposited by the microwave remote-plasma enhanced chemical vapor deposition at temperature of $175^{\circ}C$ and various gas ratios for solar cell applications. The good quality amorphous silicon films were formed at silane $(SiH_4)$ gas flow rates above 15 seem. The highest effective carrier lifetime was obtained at the $SiH_4$, flow rate of 20 seem and the value was about 3 times higher compared with the bulk lifetime of 5.6 ${\mu}s$ at a fixed injection level of ${\Delta}n\;=\;5{\times}10^{14}\;cm^{-3}$. An annealing treatment was performed and the carrier life times were increased approximately 5 times compared with the bulk lifetime. The optimal annealing temperature and time were obtained at 250 $^{\circ}C$ and 60 sec respectively. This indicates that the combination of the deposition of an amorphous thin film at a low temperature and the annealing treatment contributes to the excellent surface and bulk passivation.