DOI QR코드

DOI QR Code

Connectedness of the dry bulk carrier market before and after COVID-19

COVID-19 전후의 건화물선 시장의 연계성

  • 정대성 (광주대학교 경영학과 ) ;
  • 최기홍 (부산대학교 경제통상연구원)
  • Received : 2024.06.07
  • Accepted : 2024.06.28
  • Published : 2024.06.30

Abstract

This study analyzed the connectivity of the dry bulk carrier market before and after COVID-19 to examine the impact of COVID-19 on the global shipping market. Using the Quantile Time Frequency Connectedness methodology, we analyzed the dynamic connectedness of major dry bulk indices: the Capesize Index (BCI), Supramax Index (BSI), Panamax Index (BPI), and Handysize Index (BHSI). The results are as follows. First, the total spillover connectedness of the dry bulk carrier market increased during the entire period and in the short term after the outbreak of COVID-19, while it slightly decreased in the long term. Second, the roles among the indices changed according to market conditions, with COVID-19 causing the BPI to change from a net receiver to a net transmitter in the short term and the BSI in the long term, affecting net spillover connectedness. Third, it was observed that long-term connectivity tended to increase more than short-term connectedness under extreme conditions. Fourth, the phenomenon of strengthened connectedness under extreme market conditions was confirmed. These results provide important insights into understanding short-term market shocks and long-term stability trends, demonstrating that the connectedness among dry bulk carrier markets strengthens in global crisis situations such as COVID-19. This provides a basis for assessing the resilience and vulnerability of the shipping market and offers useful information for investors and policymakers in crisis management and investment strategy formulation.

본 연구는 COVID-19 이전과 이후의 건화물선 시장 연계성을 분석하여, COVID-19가 글로벌 해운 산업에 미친 영향을 살펴보았다. 주요 건화물선 시장 운임 지수인 케이프 지수(BCI), 수프라막스 지수(BSI), 파나막스 지수(BPI), 핸디사이즈 지수(BHSI)의 동적 연계성을 Quantile Time Frequency Connectedness 방법론을 사용하여 분석하였다. 분석 결과는 다음과 같다. 첫째, COVID-19 발생 이후 건화물선 시장의 총 전이 연계성은 전체 기간과 단기적으로 증가한 반면, 장기적으로는 약간 감소하였다. 둘째, 지수 간의 역할이 시장 상황에 따라 변화하였으며, COVID-19로 인해 단기 BPI와 장기 BSI가 순 수신자에서 순 전달자로 변하는 등 순 전이 연계성에 영향을 미쳤다. 셋째, 극단적인 상황에서 장기 연계성이 단기보다 더 증가하는 경향이 관찰되었다. 넷째, 극단적인 시장 상황에서 상호 연계성이 더욱 강화되는 현상을 확인할 수 있었다. 이러한 결과는 단기적인 시장 충격과 장기적인 안정성 추세를 이해하는 데 중요한 시사점을 제공하며, COVID-19와 같은 글로벌 위기 상황에서 건화물선 시장 간의 연계성이 강화됨을 보여준다. 이는 해운 시장의 복원력과 취약성을 평가할 수 있는 근거를 마련하고, 투자자와 정책 결정자에게 위기 관리와 투자 전략 수립에 유용한 정보를 제공한다.

Keywords

Acknowledgement

이 논문 또는 저서는 2021년 대한민국 교육부와 한국연구재단의 지원을 받아 수행된 연구임(NRF-2021S1A5B5A16078258)

References

  1. 김형호.성기덕.전준우.여기태 (2016), 해운선사 주가와 해상 운임지수의 영향관계 분석. Journal of Digital Convergence, 제14권 6호, 157-165. https://doi.org/10.14400/JDC.2016.14.6.157
  2. 서지영.서현원 (2010), KDI 경제정보센터.
  3. 최기홍, 김부권 (2022), 해상운임지수와 상품가격 사이의 동적 연계성 분석, 한국항만경제학회지, 38 (2), 49-67.
  4. 최기홍.김동윤 (2019), 발틱운임지수가 한국 주가 변동성에 미치는 영향. 한국항만경제학회지, 제35권 2호, 61-76.
  5. 황요평.오예은.박근식 (2022), 제철원료 운송시장의 변동성 전이 분석에 대한 연구, 무역학회지, 제47권 4호, 215-231. https://doi.org/10.22659/KTRA.2022.47.4.215
  6. Adrian, T., and Brunnermeier, M. K. (2016), CoVaR. The American Economic Review, 106 (7), 1705.
  7. Alizadeh, A. H., and Muradoglu, G. (2014), Stock market efficiency and international shipping-market information. Journal of international financial markets, institutions and money, 33, 445-461. https://doi.org/10.1016/j.intfin.2014.10.002
  8. Antonakakis, N., Chatziantoniou, I., & Gabauer, D. (2020), Refined measures of dynamic connectedness based on time-varying parameter vector autoregressions. Journal of Risk and Financial Management, 13 (4), 84.
  9. Bandyopadhyay, A., & Rajib, P. (2023). The asymmetric relationship between Baltic Dry Index and commodity spot prices: evidence from nonparametric causality-in-quantiles test. Mineral Economics, 36 (2), 217-237.
  10. Chatziantoniou, I., Abakah, E. J. A., Gabauer, D., & Tiwari, A. K. (2022). Quantile time-frequency price connectedness between green bond, green equity, sustainable investments and clean energy markets. Journal of Cleaner Production, 361, 132088.
  11. Chen, S., Meersman, H., & Van De Voorde, E. (2010). Dynamic interrelationships in returns and volatilities between Capesize and Panamax markets. Maritime Economics & Logistics, 12, 65-90. https://doi.org/10.1057/mel.2009.19
  12. Giannarakis, G., Lemonakis, C., Sormas, A., and Georganakis, C. (2017), The effect of Baltic Dry Index, gold, oil and usa trade balance on dow jones sustainability index world. International Journal of Economics and Financial Issues, 7 (5), 155.
  13. Grammenos, C. T., & Arkoulis, A. G. (2002). Macroeconomic factors and international shipping stock returns. International journal of maritime economics, 4, 81-99.
  14. Kalouptsidi, M. (2014). Detection and impact of industrial subsidies: The case of Chinese shipbuilding. Review of Economic Studies, 81 (2), 1111-1158.
  15. Kavussanos, M. G. (2003). Time varying risks among segments of the tanker freight markets. Maritime Economics & Logistics, 5, 227-250. https://doi.org/10.1057/palgrave.mel.9100079
  16. Kavussanos, M. G. (1997). The dynamics of time-varying volatilities in different size second-hand ship prices of the dry-cargo sector. Applied Economics, 29 (4), 433-443.
  17. Kavussanos, M. G. (1996). Comparisons of volatility in the dry-cargo ship sector: Spot versus time charters, and smaller versus larger vessels. Journal of Transport economics and Policy, 67-82.
  18. Kilian, L., & Zhou, X. (2018). Modeling fluctuations in the global demand for commodities. Journal of International Money and Finance, 88, 54-78. https://doi.org/10.1016/j.jimonfin.2018.07.001
  19. Koop, G., Pesaran, M. H., & Potter, S. M. (1996). Impulse response analysis in nonlinear multivariate models. Journal of econometrics, 74(1), 119-147. https://doi.org/10.1016/0304-4076(95)01753-4
  20. Liu, B. Y., Fan, Y., Ji, Q., & Hussain, N. (2022). High-dimensional CoVaR network connectedness for measuring conditional financial contagion and risk spillovers from oil markets to the G20 stock system. Energy Economics, 105, 105749.
  21. Michail, N. A., & Melas, K. D. (2020). Quantifying the relationship between seaborne trade and shipping freight rates: A Bayesian vector autoregressive approach. Maritime Transport Research, 1, 100001.
  22. Papapostolou, N. C., Nomikos, N. K., Pouliasis, P. K., & Kyriakou, I. (2014). Investor sentiment for real assets: the case of dry bulk shipping market. Review of Finance, 18 (4), 1507-1539. https://doi.org/10.1093/rof/rft037
  23. Pesaran, H. H., & Shin, Y. (1998). Generalized impulse response analysis in linear multivariate models. Economics letters, 58(1), 17-29. https://doi.org/10.1016/S0165-1765(97)00214-0
  24. Theodossiou, P., Tsouknidis, D., & Savva, C. (2020). Freight rates in downside and upside markets: pricing of own and spillover risks from other shipping segments. Journal of the Royal Statistical Society Series A: Statistics in Society, 183 (3), 1097-1119. https://doi.org/10.1111/rssa.12553
  25. Tsouknidis, D. A. (2016). Dynamic volatility spillovers across shipping freight markets. Transportation Research Part E: Logistics and Transportation Review, 91, 90-111. https://doi.org/10.1016/j.tre.2016.04.001
  26. Yang, J., Zhang, X., and Ge, Y. E. (2022), Measuring risk spillover effects on dry bulk shipping market: a value-at-risk approach. Maritime Policy & Management, 49 (4), 558-576. https://doi.org/10.1080/03088839.2021.1889064