DOI QR코드

DOI QR Code

A loosely coupled transformer structure with anti-offset capability based on uniform magnetic field

  • Yufei Zhou (College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics) ;
  • Yu Yan (College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics) ;
  • Dongdong Li (Zhejiang EV-Tech Co., Ltd) ;
  • Yang Luo (College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics)
  • Received : 2023.09.30
  • Accepted : 2024.03.10
  • Published : 2024.08.20

Abstract

Inductively coupled power transfer (ICPT) technology is widely used in wireless charging systems because of its safety, convenience, and reliability. However, the loosely coupled transformer, the most significant part of an ICPT system, has misalignment conditions in practical applications, which have a negative effect on the efficiency of the ICPT system. This paper proposes a new loosely coupled transformer structure, where the primary side is composed of two hybrid winding D coils and a solenoid coil, and the secondary side consists of a D coil and a solenoid coil, which is referred to as a "double-D solenoid coil-D solenoid coil" (DDS-DS). The hybrid winding D coils, which are composed of multiple layers of windings, can construct a uniform magnetic field at the operational air gap. The S coil is added to the primary and secondary sides of the transformer to build a mutually perpendicular energy channel with the D coils, which compensates the coupling valley without introducing cross-coupling. Therefore, the DDS-DS structure can construct a wide uniform magnetic field and effectively improve the anti-offset capability of the system. Finally, an experimental prototype is established, and the effective charging width reaches 78% of the transmitting coil's width with a 50 mm operational air gap, which verifies that the structure has good anti-offset capability.

Keywords

Acknowledgement

This work was supported by the Research and Practice Innovation Program of Nanjing University of Aeronautics and Astronautics under grant xcxjh20230415.

References

  1. Hou, X., Wang, Z., Su, Y., Liu, Z., Deng, Z.: A Dual-frequency dual-load multirelay magnetic coupling wireless power transfer system using shared power channel. IEEE Trans. Power Electron. 37(12), 15717-15727 (2022) https://doi.org/10.1109/TPEL.2022.3190143
  2. Zhao, F., Wei, G., Zhu, C., Song. K.: Design and optimizations of asymmetric solenoid type magnetic coupler in wireless charging system for electric vehicles. IEEE PELS Workshop Emerg. Technol.: Wirel. Power Transf. (2017)
  3. Ramezani, A., Narimani, M.: Optimal design of fully integrated magnetic structure for wireless charging of electric vehicles. IEEE Trans. Transp. Electrif. 7(4), 2114-2127 (2021) https://doi.org/10.1109/TTE.2021.3067875
  4. Li, S., Mi, C.C.: Wireless power transfer for electric vehicle applications. IEEE J. Emerg. Sel. Top. Power Electron. 3(1), 4-17 (2015) https://doi.org/10.1109/JESTPE.2014.2319453
  5. L. Shi, N. Rasool, H. Zhu, K. Huang and Y. Yang.: Design and Experiment of a Reconfigurable Magnetic Resonance Coupling Wireless Power Transmission System. IEEE Microwave and Wireless Components Letters, 30(7), 705-708(2020) https://doi.org/10.1109/LMWC.2020.2997068
  6. Bhattacharya, S., Tan, Y. K.: Design of static wireless charging coils for integration into electric vehicle. IEEE Third International Conference on Sustainable Energy Technologies (ICSET) (2012)
  7. Mohamed, A.A.S., Lashway, C.R., Mohammed, O.: Modeling and feasibility analysis of quasi-dynamic WPT system for EV applications. IEEE Trans. Transp. Electrif. 3(2), 343-353 (2017) https://doi.org/10.1109/TTE.2017.2682111
  8. Bai, X., Lu, Y., Zhan, C., Martins, R.P.: A 6.78-MHz wireless power transfer system with inherent wireless phase shift control without feedback data sensing coil. IEEE J. Solid-State Circuits 58(6), 1746-1757 (2023) https://doi.org/10.1109/JSSC.2022.3228101
  9. Nagendra, G., Boys, J., Covic, G., Riar, B., Sandhi, A.: Design of a double coupled IPT EV highway.Proc. IECON 39th Annu. Conf. IEEE Ind. Electron. Soc, 4606-4611(2013)
  10. McDonough, M., Shamsi, P., Fahimi, B.: Application of multi-port power electronic interface for contactless transfer of energy in automotive applications. IEEE Veh. Power Propulsion Conf, 1(6), (2011)
  11. Onar, O. C., Miller, J. M., Campbell, S. L., Coomer, C., White, C., Seiber., L. E.: A novel wireless power transfer for in-motion ev/phevchargin. IEEE 28th Annu. Appl. Power Electron. Conf. Expo. 3073-3080, (2013)
  12. Song, B., Shin, J., Chung, S., Shin, S., Lee, S., Kim, Y. et al.: Design of a pickup with compensation winding for on-line electric vehicle (OLEV). IEEE Wirel. Power Transf. 60-62 (2013)
  13. Budhia, M., Covic, G. A., Boys, J. T.: Design and optimisation of magnetic structures for lumped inductive power transfer systems. IEEE Energy Convers. Congr. Expos. (2009)
  14. Aditya, K., Sood, V.K., Williamson, S.S.: Magnetic characterization of unsymmetrical coil pairs using archimedean spirals for wider misalignment tolerance in IPT systems. IEEE Trans. Transp. Electrif. 3(2), 454-463 (2017) https://doi.org/10.1109/TTE.2017.2673847
  15. Luo, Z., Wei, X.: Analysis of square and circular planar spiral coils in wireless power transfer system for electric vehicles. IEEE Trans. Ind. Electron. 65(1), 331-341 (2018)
  16. Wang, S., Hu, Z., Rong, C., Lu, C., Chen, J., Liu, M.: Planar Multiple-antiparallel square transmitter for position-insensitive wireless power transfer. IEEE Antennas Wirel. Propag. Lett. 17(2), 188-192 (2018) https://doi.org/10.1109/LAWP.2017.2779755
  17. Yinliang, D., Yuanmao, S., Yougang. G.:Design of coil structure achieving uniform magnetic field distribution for wireless charging platform. International conference on power electronics systems and applications, Hong Kong, China, 2011
  18. Budhia, M., Boys, J.T., Covic, G.A., Huang, C.-Y.: Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems. IEEE Trans. Ind. Electron. 60(1), 318-328 (2013) https://doi.org/10.1109/TIE.2011.2179274
  19. Budhia, M., Covic, G. A., Boys, J. T., Huang, C. -Y.: Development and evaluation of single sided flux couplers for contactless electric vehicle charging. IEEE Energy Conversion Congress and Exposition (2011)
  20. Zaheer, A., Covic, G.A., Kacprzak, D.: A bipolar pad in a 10-kHz 300-W distributed IPT system for AGV applications. IEEE Trans. Ind. Electron. 61(7), 3288-3301 (2014) https://doi.org/10.1109/TIE.2013.2281167
  21. Hui, S.Y.R., Ho, W.W.C.: A new generation of universal contactless battery charging platform for portable consumer electronic equipment. IEEE Trans. Power Electron. 20(3), 620-627 (2005) https://doi.org/10.1109/TPEL.2005.846550
  22. Zhang, C., Wang, W., Xu, C., Yang, J.: Research on uniform magnetic field compensation structure of array circular coils for wireless power transfer. IEEE Trans. Magn. 57(6), 1-5 (2021)
  23. Tejeda, A., Kim, S., Lin, F.Y., Covic, G.A., Boys, J.T.: A hybrid solenoid coupler for wireless charging applications. IEEE Trans. Power Electron. 34(6), 5632-5645 (2019) https://doi.org/10.1109/TPEL.2018.2867430
  24. Choi, S.Y., Jeong, S.Y., Lee, E.S., Gu, B.W., Lee, S.W., Rim, C.T.: Generalized models on self-decoupled dual pick-up coils for large lateral tolerance. IEEE Trans. Power Electron. 30(11), 6434-6445 (2015) https://doi.org/10.1109/TPEL.2015.2399938
  25. Xu, L., Du, Y., Shi. L.: Reluctance circuit analysis and structure optimization of contactless transformer. International Conference on Electrical Machines and Systems (ICEMS), Sydney, NSW, Australia (2017)