DOI QR코드

DOI QR Code

A VARIANT OF D'ALEMBERT'S AND WILSON'S FUNCTIONAL EQUATIONS FOR MATRIX VALUED FUNCTIONS

  • Abdellatif Chahbi (Equipe d'Equations Fonctionnelles et Applications Department of Mathematics Faculty of Sciences Ibn Zohr University) ;
  • Mohamed Chakiri (Equipe d'Equations Fonctionnelles et Applications Department of Mathematics Faculty of Sciences Ibn Zohr University) ;
  • Elhoucien Elqorachi (Equipe d'Equations Fonctionnelles et Applications Department of Mathematics Faculty of Sciences Ibn Zohr University)
  • Received : 2022.03.13
  • Accepted : 2024.04.05
  • Published : 2024.07.31

Abstract

Given M a monoid with a neutral element e. We show that the solutions of d'Alembert's functional equation for n × n matrices Φ(pr, qs) + Φ(sp, rq) = 2Φ(r, s)Φ(p, q), p, q, r, s ∈ M are abelian. Furthermore, we prove under additional assumption that the solutions of the n-dimensional mixed vector-matrix Wilson's functional equation $$\begin{cases}f(pr, qs) + f(sp, rq) = 2\phi(r, s)f(p, q),\\Φ(p, q) = \phi(q, p),{\quad}p, q, r, s {\in} M\end{cases}$$ are abelian. As an application we solve the first functional equation on groups for the particular case of n = 3.

Keywords

References

  1. J. A. Baker and K. R. Davidson, Cosine, exponential and quadratic functions, Glas. Mat. Ser. III 16(36) (1981), no. 2, 269-274.
  2. B. Bouikhalene, E. Elqorachi and Y. Manar, Wilson's functional equations for vector and 3×3 matrix valued functions, Inequality Theory and Applications, Novapublishers, 6, 2010.
  3. A. Chahbi and E. Elqorachi, A variant of d'Alembert's and Wilson's functional equations for 2×2 matrix valued functions, J. Math. Anal. Appl. 501 (2021), no. 2, Paper No. 125186, 18 pp. https://doi.org/10.1016/j.jmaa.2021.125186
  4. W. Chojnacki, Fonctions cosinus hilbertiennes bornees dans les groupes commutatifs localement compacts, Compos. Mat. 57 (1986), no. 1, 15-60. http://www.numdam.org/item?id=CM_1986__57_1_15_0
  5. W. Chojnacki, Group representations of bounded cosine functions, J. Reine Angew. Math. 478 (1996), 61-84. https://doi.org/10.1515/crll.1996.478.61
  6. J. K. Chung, P. Kannappan, C. T. Ng, and P. K. Sahoo, Measures of distance between probability distributions, J. Math. Anal. Appl. 138 (1989), no. 1, 280-292. https://doi.org/10.1016/0022-247X(89)90335-1
  7. H. H. Elfen, T. Riedel, and P. K. Sahoo, A variant of the quadratic functional equation on groups and an application, Bull. Korean Math. Soc. 54 (2017), no. 6, 2165-2182. https://doi.org/10.4134/BKMS.b160824
  8. H. O. Fattorini, Uniformly bounded cosine functions in Hilbert space, Indiana Univ. Math. J. 20 (1970/71), 411-425. https://doi.org/10.1512/iumj.1970.20.20035
  9. J. Kisynski, On operator-valued solutions of d'Alembert's functional equation. I, Colloq. Math. 23 (1971), 107-114. https://doi.org/10.4064/cm-23-1-107-114
  10. J. Kisynski, On operator-valued solutions of d'Alembert's functional equation. II, Studia Math. 42 (1972), 43-66. https://doi.org/10.4064/sm-42-1-43-66
  11. S. Kurepa, A cosine functional equation in Banach algebras, Acta Sci. Math. (Szeged) 23 (1962), 255-267.
  12. P. Sinopoulos, Wilson's functional equation for vector and matrix functions, Proc. Amer. Math. Soc. 125 (1997), no. 4, 1089-1094. https://doi.org/10.1090/S0002-9939-97-03685-X
  13. P. Sinopoulos, Wilson's functional equation in dimension 3, Aequationes Math. 66 (2003), no. 1-2, 164-179. https://doi.org/10.1007/s00010-003-2680-z
  14. H. Stetkaer, Functional equations on abelian groups with involution, Aequationes Math. 54 (1997), 144-172. https://doi.org/10.1007/BF02755452
  15. H. Stetkaer, D'Alembert's and Wilson's functional equations for vector and 2×2 matrix valued functions, Math. Scand. 87 (2000), no. 1, 115-132. https://doi.org/10.7146/math.scand.a-14302
  16. H. Stetkaer, A variant of d'Alembert's functional equation, Aequationes Math. 89 (2015), no. 3, 657-662. https://doi.org/10.1007/s00010-014-0253-y
  17. L. Szekelyhidi, Functional equations on abelian groups, Acta Math. Acad. Sci. Hungar. 37 (1981), no. 1-3, 235-243. https://doi.org/10.1007/BF01904885