DOI QR코드

DOI QR Code

SUPER AND STRONG γ𝓗-COMPACTNESS IN HEREDITARY m-SPACES

  • Received : 2023.08.03
  • Accepted : 2024.04.16
  • Published : 2024.07.31

Abstract

Let (X, m, 𝓗) be a hereditary m-space and γ : m → P(X) be an operation on m. A subset A of X is said to be γ𝓗-compact relative to X [3] if for every cover {U𝛼 : 𝛼 ∈ 2206;} of A by m-open sets of X, there exists a finite subset ∆0 of ∆ such that A ⧵ ∪{γ(U𝛼) : 𝛼 ∈ ∆0} ∈ 𝓗. In this paper, we define and investigate two kinds of strong forms of γ𝓗-compact relative to X.

Keywords

Acknowledgement

The authors are highly grateful to editors and referees for their valuable comments and suggestions for improving the paper.

References

  1. A. Al-Omari, H. Al-Saadi, and T. Noiri, On extremally disconnected spaces via m-structures, Commun. Korean Math. Soc. 34 (2019), no. 1, 351-359. https://doi.org/10.4134/CKMS.c170478
  2. A. Al-Omari, S. Modak, and T. Noiri, On θ-modifications of generalized topologies via hereditary classes, Commun. Korean Math. Soc. 31 (2016), no. 4, 857-868. https://doi.org/10.4134/CKMS.c160002
  3. A. Al-Omari and T. Noiri, Properties of γ𝓗-compact spaces with hereditary classes, Atti Accad. Peloritana Pericolanti Cl. Sci. Fis. Mat. Natur. 98 (2020), no. 2, A4, 11 pp. https://doi.org/10.1478/AAPP.982A4
  4. A. Al-Omari and T. Noiri, Properties of θ-H-compact sets in hereditary m-spaces, Acta Comment. Univ. Tartu. Math. 26 (2022), no. 2, 193-206. https://doi.org/10.12697/ACUTM.2022.26.13
  5. A. Csaszar, Modification of generalized topologies via hereditary classes, Acta Math. Hungar. 115 (2007), no. 1-2, 29-35. https://doi.org/10.1007/s10474-006-0531-9
  6. T. R. Hamlett and D. S. Jankovic, Compactness with respect to an ideal, Boll. Un. Mat. Ital. B (7) 4 (1990), no. 4, 849-861.
  7. D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly 97 (1990), no. 4, 295-310. https://doi.org/10.2307/2324512
  8. K. Kuratowski, Topology. Vol. I, new edition, revised and augmented., translated from the French by J. Jaworowski, Academic Press, New York, 1966.
  9. H. Maki, K. C. Rao, and A. Nagoor Gani, On generalizing semi-open sets and preopen sets, Pure Appl. Math. Sci. 49 (1999), no. 1-2, 17-29.
  10. R. L. Newcomb, Topologies which are compact modulo an ideal, Ph. D. Dissertation, Univ. of Cal. at Santa Barbara, 1967.
  11. T. Noiri, A unified theory for generalizations of compact spaces, Ann. Univ. Sci. Budapest. Eotvos Sect. Math. 54 (2011), 79-96.
  12. V. Popa and T. Noiri, On M-continuous functions, An. Univ. "Dunarea de Jos" Galati, Ser. Mat. Fiz. Mec. Teor. (2), 43(23) (2000), 31-41.
  13. D. V. Rancin, Compactness modulo an ideal, Soviet Math. Dokl., 13 (1972), 193-197.
  14. R. Vaidyanathaswamy, The localisation theory in set-topology, Proc. Indian Acad. Sci., Sect. A. 20 (1944), 51-61. https://doi.org/10.1007/BF03048958