Acknowledgement
The authors are highly grateful to editors and referees for their valuable comments and suggestions for improving the paper.
References
- A. Al-Omari, H. Al-Saadi, and T. Noiri, On extremally disconnected spaces via m-structures, Commun. Korean Math. Soc. 34 (2019), no. 1, 351-359. https://doi.org/10.4134/CKMS.c170478
- A. Al-Omari, S. Modak, and T. Noiri, On θ-modifications of generalized topologies via hereditary classes, Commun. Korean Math. Soc. 31 (2016), no. 4, 857-868. https://doi.org/10.4134/CKMS.c160002
- A. Al-Omari and T. Noiri, Properties of γ𝓗-compact spaces with hereditary classes, Atti Accad. Peloritana Pericolanti Cl. Sci. Fis. Mat. Natur. 98 (2020), no. 2, A4, 11 pp. https://doi.org/10.1478/AAPP.982A4
- A. Al-Omari and T. Noiri, Properties of θ-H-compact sets in hereditary m-spaces, Acta Comment. Univ. Tartu. Math. 26 (2022), no. 2, 193-206. https://doi.org/10.12697/ACUTM.2022.26.13
- A. Csaszar, Modification of generalized topologies via hereditary classes, Acta Math. Hungar. 115 (2007), no. 1-2, 29-35. https://doi.org/10.1007/s10474-006-0531-9
- T. R. Hamlett and D. S. Jankovic, Compactness with respect to an ideal, Boll. Un. Mat. Ital. B (7) 4 (1990), no. 4, 849-861.
- D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly 97 (1990), no. 4, 295-310. https://doi.org/10.2307/2324512
- K. Kuratowski, Topology. Vol. I, new edition, revised and augmented., translated from the French by J. Jaworowski, Academic Press, New York, 1966.
- H. Maki, K. C. Rao, and A. Nagoor Gani, On generalizing semi-open sets and preopen sets, Pure Appl. Math. Sci. 49 (1999), no. 1-2, 17-29.
- R. L. Newcomb, Topologies which are compact modulo an ideal, Ph. D. Dissertation, Univ. of Cal. at Santa Barbara, 1967.
- T. Noiri, A unified theory for generalizations of compact spaces, Ann. Univ. Sci. Budapest. Eotvos Sect. Math. 54 (2011), 79-96.
- V. Popa and T. Noiri, On M-continuous functions, An. Univ. "Dunarea de Jos" Galati, Ser. Mat. Fiz. Mec. Teor. (2), 43(23) (2000), 31-41.
- D. V. Rancin, Compactness modulo an ideal, Soviet Math. Dokl., 13 (1972), 193-197.
- R. Vaidyanathaswamy, The localisation theory in set-topology, Proc. Indian Acad. Sci., Sect. A. 20 (1944), 51-61. https://doi.org/10.1007/BF03048958