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A VARIANT OF D’ALEMBERT’S AND WILSON’S
FUNCTIONAL EQUATIONS FOR MATRIX VALUED

FUNCTIONS

Abdellatif Chahbi, Mohamed Chakiri, and Elhoucien Elqorachi

Abstract. Given M a monoid with a neutral element e. We show that
the solutions of d’Alembert’s functional equation for n× n matrices

Φ(pr, qs) + Φ(sp, rq) = 2Φ(r, s)Φ(p, q), p, q, r, s ∈ M

are abelian. Furthermore, we prove under additional assumption that the
solutions of the n-dimensional mixed vector-matrix Wilson’s functional
equation {

f(pr, qs) + f(sp, rq) = 2Φ(r, s)f(p, q),

Φ(p, q) = Φ(q, p), p, q, r, s ∈ M

are abelian. As an application we solve the first functional equation on
groups for the particular case of n = 3.

1. Introduction

During their investigations of distance measures, Chung, Kannappan, Ng,
and Sahoo [6, Lemma 2.2] found the solutions f : ]0, 1[×]0, 1[−→ R of the
functional equation

(1.1) f(pr, qs) + f(sp, rq) = f(p, q)f(r, s), p, q, r, s ∈]0, 1[.

In [16] Stetkær obtained the general solution f : S −→ C of the variant of
d’Alembert’s functional equation

(1.2) f(xy) + f(σ(y)x) = 2f(x)f(y), x, y ∈ S

on a possibly non-commutative semigroup S, where σ : S −→ S is an involutive
automorphism. That is σ(xy) = σ(x)σ(y) and σ(σ(x)) = x for all x, y ∈ S.
The solutions of (1.2) are the functions f = χ+χ◦σ

2 , where χ : S −→ C is a
multiplicative function.

If S is a semigroup, then the switch map σ(x, y) := (y, x) is an involu-
tive automorphism of the product semigroup S × S. By help of σ and the
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component-wise multiplication (p, q)(r, s) = (pr, qs) we reformulate (1.1) as

f((p, q)(r, s)) + f(σ(r, s)(p, q)) = f(p, q)f(r, s), (p, q), (r, s) ∈ S × S.

Then (1.1) is a special instance of (1.2), if we work with g = f/2 instead of f .
In this paper we study the n-dimensional version of the variant of d’Alembert’s

functional equation

(1.3) Φ(pr, qs) + Φ(sp, rq) = 2Φ(r, s)Φ(p, q) p, q, r, s ∈M,

and the vector-matrix variant of Wilson’s functional equation

(1.4)
{
f(pr, qs) + f(sp, rq)=2Φ(r, s)f(p, q),
Φ(p, q) = Φ(q, p), p, q, r, s ∈M,

where M is a monoid, f : M ×M −→ Cn, Φ : M ×M → Mn(C) are the
unknown functions.

Our first purpose is to prove that the solutions Φ of the functional equation
(1.3) are abelian as well as showing that the solutions (f,Φ) of the functional
equation (1.4) are abelian since the components of f are linearly independent.
Moreover, we find that f remains an abelian function even if we avoid the last
condition. Secondly, as an application we solve the functional equation (1.3)
on groups for the particular case n = 3.

The matrix or even operator version of d’Alembert’s functional equation

(1.5) Φ(xy) + Φ(σ(y)x) = 2Φ(y)Φ(x), x, y ∈M,

on abelian groups M = G with σ = −id and Φ(e) = I has been treated by
Fattorini [8], Kurepa [11], Baker and Davidson [1], Kisyński [9,10], Székelyhidi
[17], Chojnacki [4, 5], Sinopoulos [12, 13] and Stetkær [15], Bouikhalene, Elqo-
rachi and Manar [2] for general involutions σ. In non-abelian groups and non
abelian monoids generated by their squares, the solutions of (1.5) taking their
values in M2(C) were recently obtained by Chahbi and Elqorachi [3]. The
solutions described in [3] are not necessarily abelian.

Wilson’s functional equation has been studied in the mixed vector-matrix
form

(1.6) f(xy) + f(σ(y)x) = 2Φ(y)f(x), x, y ∈ G,

by P. Sinopoulos [12, 13], with σ(x) = x−1, x ∈ G, by Stetkær [15] as well as
Bouikhalene, Elqorachi and Manar [2] with a general involutive automorphism
σ on abelian groups.

The solutions of (1.6) taking their values in C2 are obtained in [3] under the
condition that Φ is a solution of d’Alembert’s matrix functional equation (1.5).

2. Notation, terminology and some preliminary results

In this section we present a general set-up and auxiliary results which will
be used in the next sections.
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Notation and terminology

Throughout this paper S denotes an arbitrary semigroup, while M and G
are respectively a monoid and a group with neutral element e.
σ : S −→ S will be any involutive automorphism. For the sake of conve-

nience, we will denote G×G by G, M ×M by M and (e, e) by e. Then G (or
M) is a group (or a monoid) with a neutral element e under component-wise
multiplication. That is, (p, q)(r, s) = (pr, qs). We denote by M (G) the set of
all homomorphisms µ : G −→ C on G valued in (C, ·): µ(xy) = µ(x)µ(y) for
all x, y ∈ G, and M+(G) := {µ ∈ M (G) : µ ◦ σ = µ} . Let A (G) be the set of
all additive maps a : G −→ C of G into (C,+): a(xy) = a(x) + a(y) for all
x, y ∈ G, and A±(G) := {a ∈ A (G) : a ◦ σ = ±a}. S (G) denotes the set of
maps Q : G → C defined by Q(x) = q(x, x), x ∈ G, with q : G×G → C being
a symmetric bi-additive map and S −(G) is the subset of S (G) for which q
satisfies q(σ(x), y) = −q(x, y) for any x, y ∈ G. For a function f , the new
functions fe := f+f◦σ

2 and fo := f−f◦σ
2 denote respectively the even and the

odd part of f .
Fn denotes the set of all Cn-valued functions on M with linearly inde-

pendent components. We should note for f : M −→ Cn that f ∈ Fn ⇐⇒
span {f(x)|x ∈M} = Cn. We define that a function f on S is abelian if f is
central: f(xy) = f(yx) for all x, y ∈ S, and f satisfies the Kannappan condi-
tion: f(xyz) = f(xzy) for all x, y, z ∈ S. Finally, Mn(C) is the set of all n×n
matrices over C, GL(n,C) is the group of n × n invertible matrices, In is the
unit matrix of Mn(C) and the transpose of a matrix A is denoted by AT .

The next lemma was obtained in [3].

Lemma 2.1. Let σ be an involutive automorphism of M . If Φ :M −→ Mn(C)
is a solution of the functional equation

(2.1)
{

Φ(xy) + Φ(σ(y)x) = 2Φ(x)Φ(y), x, y ∈M,
Φ(e) = In.

Then
(i) Φ ◦ σ = Φ
(ii) Φ(x)Φ(y) = Φ(y)Φ(x) for all x, y ∈M.

Remark 1. The Lemma 2.1 remains true for the following variant of d’Alembert’s
matrix functional equation:

(2.2)
{

Φ(xy) + Φ(σ(y)x) = 2Φ(y)Φ(x) x, y ∈M
Φ(e) = In.

Lemma 2.2. Let Φ :M −→ Mn(C) be a central solution of (2.1) or of (2.2),
then Φ is abelian.

Proof. Replacing x by xy and y by z in (2.1) we get

Φ(xyz) = 2Φ(xy)Φ(z)− Φ(σ(z)xy).
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Applying (2.1) to the term Φ(σ(z)xy) gives

Φ(yzσ(x)) + Φ(σ(z)xy) = 2Φ(y)Φ(σ(z)x).

So we get

Φ(xyz) = 2Φ(xy)Φ(z) + Φ(yzσ(x))− 2Φ(y)Φ(zσ(x)).

Doing the same for the terms Φ(yzσ(x)) and Φ(zσ(x)) leads to

Φ(xyz) =2Φ(xy)Φ(z) + 2Φ(yz)Φ(σ(x))− Φ(xyz)

− 4Φ(y)Φ(z)Φ(σ(x)) + 2Φ(y)Φ(xz).

Taking into account ((i), Lemma 2.1) that Φ ◦ σ = Φ we obtain the identity

Φ(xyz) = Φ(x)Φ(yz) + Φ(y)Φ(xz) + Φ(z)Φ(xy)− 2Φ(y)Φ(z)Φ(x),

for all x, y, z ∈M . Since Φ(x),Φ(y) and Φ(z) commute with each other and Φ
is central, we deduce that Φ(xyz) = Φ(xzy) for all x, y, z ∈ M , which implies
that Φ is abelian. □

Proposition 2.1. Let the pair f :M −→ Cn,Φ :M −→ Mn(C) be a solution
of the matrix variant of Wilson’s functional equation

(2.3) f(xy) + f(σ(y)x) = 2Φ(y)f(x) x, y ∈M

such that

(2.4)
{

Φ(x)Φ(y)f(e) = Φ(y)Φ(x)f(e),
Φ(xy)f(e) = Φ(yx)f(e) for all x, y ∈M.

Then
(1) For all y ∈M

(2.5) Φ(y)(span{f(x) ∈ Cn|x ∈M}) ⊆ span{f(x) ∈ Cn|x ∈M}.

(2) f is central.
(3) The restriction Ψ of Φ to U := span{f(x) ∈ Cn|x ∈ M} is a solution

of the matrix variant of d’Alembert’s functional equation

(2.6) Ψ(xy) + Ψ(xσ(y)) = 2Ψ(y)Ψ(x), x, y ∈M

satisfying Ψ(e) = In|U .
(4) If f ∈ Fn then Φ is a solution of the functional equation

(2.7)
{

Φ(xy) + Φ(xσ(y)) = 2Φ(y)Φ(x), x, y ∈M,
Φ(e) = In.

Proof. It follows directly from (2.3) that Φ(y) leaves the space span{f(x) ∈
Cn|x ∈M} invariant.

To prove the second statement we will need the following:
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Lemma 2.3. Let the pair f : M −→ Cn,Φ : M −→ Mn(C) be a solution of
the functional equation (2.3). Then the identity

(2.8) f(xyz) = Φ(z)f(xy) + Φ(y)f(xz) + Φ(yz)f(x)− 2Φ(y)Φ(z)f(x),

holds for all x, y, z ∈M .

Proof. By replacing x by xy and y by z, equation (2.3) becomes

f((xy)z) + f(σ(z)xy) = 2Φ(z)f(xy) x, y, z ∈M.

If we replace y by yz in (2.3) we get

f(x(yz)) + f(σ(y)σ(z)x) = 2Φ(yz)f(x), x, y, z ∈M.

By replacing x by σ(z)x in (2.3) we obtain

f(σ(z)xy) + f(σ(y)σ(z)x) = 2Φ(y)f(σ(z)x)

= 2Φ(y)[2Φ(z)f(x)− f(xz)], x, y, z ∈M.

Subtracting the last identity from the sum of the two firsts gives the desired
identity. □

Rest of proof of Proposition 2.1. By replacing x by e in (2.8) we find that

f(yz) = Φ(z)f(y) + Φ(y)f(z) + Φ(yz)f(e)− 2Φ(y)Φ(z)f(e), x, y, z ∈M.

Since (2.4) holds, the centrality of f is immediate. Adding the two identities
that we obtain from (2.3) by replacing y by yz and yσ(z) respectively we find
that

f(xyz) + f(σ(y)σ(z)x) + f(xyσ(z)) + f(σ(y)zx)

= 2[Φ(yz) + Φ(yσ(z))]f(x).
(2.9)

Taking into account that f is central we can rewrite (2.9) as follows

f(xyz) + f(σ(z)xy) + f(xσ(y)z) + f(σ(z)xσ(y))

= 2[Φ(yz) + Φ(yσ(z))]f(x).
(2.10)

Using (2.3) again, (2.10) becomes

2Φ(z)[f(xy) + f(xσ(y))] = 2[Φ(yz) + Φ(yσ(z))]f(x),

which implies that

[Φ(yz) + Φ(yσ(z))]f(x) = 2Φ(z)Φ(y)f(x) for all x, y, z ∈M.

This shows that Ψ is a solution of the functional equation (2.6). Putting
y = e in the original functional equation (2.3) we see that Ψ(e) = In on
span{f(x) ∈ Cn|x ∈ M}. This proves (3), and consequently (4) holds since
f ∈ Fn. □
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3. A variant of d’Alembert’s functional equation for matrices

At first, it is interesting to recall that the solutions Φ : G −→ M2(C) of
(1.5) with Φ(e) = I2 for a general involutive automorphism are not necessarily
abelian (see [3] p. 13 for more details). By contrast, the main result of the
present section is the fact that any solution of equation (1.3) (which is an
instance of (1.5)) is abelian. This allows us to give in this case an exhaustive
list of solutions of the functional equation (1.3) for the particular case n = 3.

Proposition 3.1. Let Φ : M −→ Mn(C) be a solution of (1.3) satisfying
Φ(e, e) = In. Then Φ is an abelian function.

Proof. Let Φ :M −→ Mn(C) be a solution of (1.3). Letting p = q = e in (1.3)
shows that Φ is symmetric: That is Φ(s, r) = Φ(r, s) for all r, s ∈M .
Now, setting q = s = e in (1.3) and taking into account Remark 1 we get

(3.1) Φ(pr, e) + Φ(p, r) = 2Φ(p, e)Φ(r, e) for all p, r ∈M.

Defining a function g : M −→ Mn(C) by g := Φ(·, e), the equation (3.1) can
be written as the following

(3.2) Φ(p, r) = 2g(p)g(r)− g(pr) for all p, r ∈M.

Since Φ is symmetric, we have

(3.3) Φ(p, r) = 2g(r)g(p)− g(rp) for all p, r ∈M.

Subtracting (3.3) from (3.2) and using Remark 1 yield

g(pr) = g(rp) for all p, r ∈M.

Hence g is central. Now, switching p and q in (1.3) and using the fact that Φ
is symmetric we get

Φ(qr, ps) + Φ(sq, rp) = 2Φ(p, q)Φ(r, s) for all p, q, r, s ∈M.

Then

Φ(pr, qs) + Φ(sp, rq) = Φ(qr, ps) + Φ(sq, rp) for all p, q, r, s ∈M.

Using (3.2) we get

2g(pr)g(qs)− g(prqs) + 2g(sp)g(rq)− g(sprq)

= 2g(qr)g(ps)− g(qrps) + 2g(sq)g(rp)− g(sqrp)

for all p, r, q, s ∈ M . Since g is central and satisfies g(a)g(b) = g(b)g(a) for all
a, b ∈M , it simplifies to

g(prqs) = g(qrps) = g(rpsq) for all p, q, r, s ∈M.

Using (3.2) to compute Φ(pr, qs) and Φ(rp, sq) we get

Φ(pr, qs) = 2g(pr)g(qs)− g(prqs) for all p, q, r, s ∈M,

and
Φ(rp, sq) = 2g(rp)g(sq)− g(rpsq) for all p, q, r, s ∈M.
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Consequently, it follows

Φ(pr, qs) = Φ(rp, sq) for all p, q, r, s ∈M,

or equivalently

Φ((p, q)(r, s)) = Φ((r, s)(p, q)) for all (p, q), (r, s) ∈M.

This shows that Φ is central. Finally, with the condition Φ(e, e) = In equation
(1.3) is an instance of (2.2), so we can use Lemma 2.2 to obtain the desired
result. □

Let Φ : M −→ Mn(C) be a solution of (1.3). Putting x = y = e in (1.3)
shows that Φ(e)Φ(e) = Φ(e), from which we see that Φ(e) is a projection. So
there are n+ 1 possibilities: Φ(e) = In, Φ(e) is a k-dimensional projection for
k ∈ {1; 2; . . . ;n− 1}, or Φ(e) = 0. However, the last possibility is uninteresting
because it implies that Φ = 0. The case Φ(e) = In was covered in Theorem 3.2
above, while the other cases are treated in Proposition 3.2 below.

Proposition 3.2. Let Φ : M −→ Mn(C) be a solution of (1.3) such that
Φ(e, e) is an k-dimensional projection for k ∈ {1; 2; . . . ;n− 1}. Then Φ is an
abelian function.

Proof. Recalling that (1.3) is an instance of (1.5), then (1.3) can be reformu-
lated as follows:

(3.4) Φ(xy) + Φ(σ(y)x) = 2Φ(y)Φ(x) x, y ∈M.

Up to a similarity the k-projection Φ(e) has the form

(3.5) Φ(e) = (θij)i;j∈{1,2,...,n} such that θij =
{
δji if i; j ∈ {1, 2, . . . , k} ,
0 otherwise,

for k ∈ {1; 2; . . . ;n− 1} , where δji is the delta Kronecker. Discarding for
simplicity of writing the similarity matrix we assume that Φ(e) is one of these
n− 1 matrices. We use the notation

(3.6) Φ = (ϕij)i;j∈{1,2,...,n}.

If Φ(e) has the form (3.5) then ϕij(e) = δji for i, j ∈ {1, 2, . . . , k} and by putting
y = e in (3.4) we get that ϕij = 0 for i ∈ {k + 1, k + 2, . . . , n}, j ∈ {1, 2, . . . , n}.
Then identity (3.4) means that the block matrix Φk := (ϕij)i;j∈{1,2,...,k} is a
solution of k-dimensional variant of d’Alembert’s functional equations:

(3.7)
{

Φk(xy) + Φk(σ(y)x) = 2Φk(y)Φk(x) x, y ∈M,
Φk(e) = Ik.

And for l ∈ {k + 1, k + 2, . . . , n} the vectors φl := [ϕ1l, ϕ2l, . . . , ϕkl]
T are solu-

tions of the n− k k-dimensional Wilson functional equations

(3.8) φl(xy) + φl(σ(y)x) = 2Φk(y)φl(x) x, y ∈M.
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According to Proposition 3.1, Φk is abelian. Then by using the identity (2.8)
of Lemma 2.3, the functional equations (3.8) shows that the n − k vectors φl

are also abelian. Consequently Φ is abelian. This completes the proof. □

Theorem 3.1. Let Φ : M −→ Mn(C) be a solution of (1.3). Then Φ is an
abelian function.

Proof. The theorem is an immediate consequence of Proposition 3.1 and Propo-
sition 3.2. □

Theorem 3.2. Let Φ : G −→ M3(C) be a solution of the matrix functional
equation (1.3) satisfying Φ(e, e) = I3. Then there exists C ∈ GL(3,C) such
that Φ has one of the following 9 forms:
(i)

(3.9) Φ = C

 (µ+ µ ◦ σ)/2 0 0
0 (γ + γ ◦ σ)/2 0
0 0 (η + η ◦ σ)/2

C−1,

where
(
µ+µ◦σ

2

)
(p, q) = µ1(p)µ2(q)+µ1(q)µ2(p)

2 , p, q ∈ G,
(
γ+γ◦σ

2

)
(p, q) =

γ1(p)γ2(q)+γ1(q)γ2(p)
2 , p, q ∈ G and

(
η+η◦σ

2

)
(p, q) = η1(p)η2(q)+η1(q)η2(p)

2 , p, q ∈ G

such that µ, γ, η ∈ M (G) \ {0} and µ1, µ2, γ1, γ2, η1, η2 ∈ M (G) \ {0} .
(ii)

(3.10) Φ = C

 µ+ µ+(a+ +Q−) 0
0 µ+ 0
0 0 (η + η ◦ σ)/2

C−1,

where µ+(p, q) = µ0(pq), p, q ∈ G, a+(p, q) = a0(pq), p, q ∈ G, Q−(p, q) =

ψ0(pq
−1), p, q ∈ G and

(
η+η◦σ

2

)
(p, q) = η1(p)η2(q)+η1(q)η2(p)

2 , p, q ∈ G such that
µ+ ∈ M+(G) \ {0}, η ∈ M (G) \ {0}, µ0, η1, η2 ∈ M (G) \ {0}, a+ ∈ A +(G),
a0 ∈ A (G), Q− ∈ S −(G) and ψ0 ∈ S (G). Furthermore a+ +Q− ̸= 0.
(iii)

(3.11) Φ = C

 µ+µ◦σ
2

µ+µ◦σ
2 a+ + µ−µ◦σ

2 a− 0
0 µ+µ◦σ

2 0
0 0 η+η◦σ

2

C−1,

where
(
µ±µ◦σ

2

)
(p, q) = µ1(p)µ2(q)±µ1(q)µ2(p)

2 , p, q ∈ G,
(η+η◦σ)

2

)
(p, q) =

η1(p)η2(q)+η1(q)η2(p)
2 , p, q ∈ G, a+(p, q) = a0(pq), p, q ∈ G , a−(p, q) = a1(pq

−1)

p, q ∈ G such that µ, η ∈ M (G)\{0} with µ ̸= µ◦σ, µ1, µ2, η1, η1 ∈ M (G)\{0}
with µ1 ̸= µ2 and a0, a1 ∈ A (G).
(iv)

(3.12) Φ = C

 µ+ 0 µ+(a+1 +Q−
1 )

0 µ+ µ+(a+2 +Q−
2 )

0 0 µ+

C−1,
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where µ+(p, q) = µ0(pq), p, q ∈ G, a+i (p, q) = bi(pq), p, q ∈ G and Q−
i (p, q) =

ψi(pq
−1) p, q ∈ G such that µ+ ∈ M+(G)\{0}, µ0 ∈ M (G)\{0}, a+i ∈ A +(G),

a0 ∈ A (G), bi ∈ A (G), Q−
i ∈ S −(G) and ψi ∈ S (G) for i=1, 2.

(v)

(3.13) Φ = C

 µ+ µ+(a+2 +Q−
2 ) µ+(a+1 +Q−

1 )
0 µ+ 0
0 0 µ+

C−1,

where µ+(p, q) = µ0(pq), p, q ∈ G, a+i (p, q) = bi(pq), p, q ∈ G and Q−
i (p, q) =

ψi(pq
−1) p, q ∈ G such that µ+ ∈ M+(G)\{0}, µ0 ∈ M (G)\{0}, a+i ∈ A +(G),

a0 ∈ A (G), bi ∈ A (G), Q−
i ∈ S −(G) and ψi ∈ S (G) for i=1, 2.

(vi)
(3.14)

Φ=C


µ+ d−1µ+(a+ + (a−)2) µ+( (a

+)2

2
+ a+(a−)2 + (a−)4

6
+ a+

1 +Q−)
0 µ+ dµ+(a+ + (a−)2)
0 0 µ+

C−1,

where µ+(p, q) = µ0(pq), p, q ∈ G, a+(p, q) = b(pq) p, q ∈ G, a+1 (p, q) = b1(pq),
p, q ∈ G, a−(p, q) = b0(pq

−1) and Q−(p, q) = ψ0(pq
−1), p, q ∈ G such that

µ+ ∈ M+(G) \ {0}, µ0 ∈ M (G) \ {0}, a+, a+1 ∈ A +(G), a− ∈ A −(G),
b, b0, b1 ∈ A (G), Q− ∈ S −(G), ψ0 ∈ S (G) and d ∈ C\{0}.
(vii)
(3.15)

Φ=C


µ+µ◦σ

2
λ1

λ (µ+µ◦σ
2 a+ + µ−µ◦σ

2 a−) ∗
0 µ+µ◦σ

2
λ2

λ (µ+µ◦σ
2 a+ + µ−µ◦σ

2 a−)
0 0 µ+µ◦σ

2

C−1,

with ∗ = µ+µ◦σ
2 a+1 + µ−µ◦σ

2 a−1 + 1
4 (µ(a

+ + a−)2 + µ ◦ σ(a+ − a−)2), and where(
µ±µ◦σ

2

)
(p, q) = µ1(p)µ2(q)±µ1(q)µ2(p)

2 , p, q ∈ G, a+(p, q) = a0(pq), a+1 (p, q) =

b1(pq), a−(p, q) = a2(pq
−1), a−1 (p, q) = a3(pq

−1), p, q ∈ G and λ2 = λ1λ2 such
that µ ∈ M (G) \ {0} with µ ̸= µ ◦ σ, µ1, µ2 ∈ M (G) \ {0} verifying µ1 ̸= µ2,
a+ ∈ A +(G), a− ∈ A −(G), a0, b1, a2, a3 ∈ A (G) and λ1, λ2 ∈ C\{0}.
(viii)

(3.16) Φ = C

 µ+µ◦σ
2 0 µ+µ◦σ

2 a+1 + µ−µ◦σ
2 a−1

0 µ+µ◦σ
2

µ+µ◦σ
2 a+2 + µ−µ◦σ

2 a−2
0 0 µ+µ◦σ

2

C−1,

where
(
µ±µ◦σ

2

)
(p, q) = µ1(p)µ2(q)±µ1(q)µ2(p)

2 , p, q ∈ G such that µ ∈ M (G) \ {0}
with µ ̸= µ ◦ σ, µ1, µ2 ∈ M (G) \ {0} verifying µ1 ̸= µ2 and where a+1 (p, q) =
b1(pq), a+2 (p, q) = b2(pq), a−1 (p, q) = a3(pq

−1), a−2 (p, q) = a4(pq
−1), p, q ∈ G

such that a+1 , a
+
2 ∈ A +(G), a−1 , a

−
2 ∈ A −(G), b1, b2, a3, a4 ∈ A (G).



794 A. CHAHBI, M. CHAKIRI, AND E. ELQORACHI

(ix)
(3.17)

Φ = C

 µ+µ◦σ
2

µ+µ◦σ
2 a+2 + µ−µ◦σ

2 a−2
µ+µ◦σ

2 a+1 + µ−µ◦σ
2 a−1

0 µ+µ◦σ
2 0

0 0 µ+µ◦σ
2

C−1,

where
(
µ±µ◦σ

2

)
(p, q) = µ1(p)µ2(q)±µ1(q)µ2(p)

2 , p, q ∈ G such that µ ∈ M (G) \ {0}
with µ ̸= µ ◦ σ, µ1, µ2 ∈ M (G) \ {0} verifying µ1 ̸= µ2 and where a+1 (p, q) =
b1(pq), a+2 (p, q) = b2(pq), a−1 (p, q) = a3(pq

−1), a−2 (p, q) = a4(pq
−1), p, q ∈ G

such that a+1 , a
+
2 ∈ A +(G), a−1 , a

−
2 ∈ A −(G), b1, b2, a3, a4 ∈ A (G). Con-

versely, the formulas of (i),(ii),. . . ,(viii) and (ix) define solutions of (1.3) sat-
isfying Φ(e, e) = I3.

Proof. It is laborious, but elementary to check that all of the possibilities listed
in Theorem 3.2 define solutions of (1.3) satisfying Φ(e, e) = I3, so it is left to
show that each solution has one of the listed forms.

Since the matrices Φ(x), x ∈ G commute with one other (Lemma 2.1),
Lemma 1 of [13] shows that there exists C ∈ GL(3,C) such that

(3.18) Φ(x) = C

 ϕ1(x) λ1ϕ(x) ϕ0(x)
0 ϕ2(x) λ2ϕ(x)
0 0 ϕ3(x)

C−1, x ∈ G

where λ1, λ2 ∈ C. Since Φ is a solution of (2.1) with Φ(e, e) = I3, Proposi-
tion 3.1 shows that ϕ, ϕ1, ϕ2, ϕ3 and ϕ0 are abelian scalar functions on G.
Furthermore, they satisfy the following functional equations

(3.19) ϕi(xy) + ϕi(σ(y)x) = 2ϕi(y)ϕi(x), for i = 1, 2, 3,

(3.20) λ1ϕ(xy) + λ1ϕ(σ(y)x) = 2λ1ϕ1(y)ϕ(x) + 2λ1ϕ(y)ϕ2(x),

(3.21) ϕ0(xy) + ϕ0(σ(y)x) = 2ϕ1(y)ϕ0(x) + 2λ1λ2ϕ(y)ϕ(x) + 2ϕ0(y)ϕ3(x),

(3.22) λ2ϕ(xy) + λ2ϕ(σ(y)x) = 2λ2ϕ2(y)ϕ(x) + 2λ2ϕ(y)ϕ3(x),

for all x, y ∈ G. To show that the solutions are expressed in terms of multi-
plicative, additive and quadratic scalar functions on G we can refer to [16] and
[7]. The rest of the proof can be found in [2]. □

Proposition 3.3. Let Φ : G −→ M3(C) be a solution of the matrix functional
equation (1.3).
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(1) If Φ(e, e) is a 1-dimensional projection then there exist µ, µ1, µ2 ∈ M (G)\
{0} with µ1 ̸= µ2, a1, a2 ∈ A (G), c, c′ ∈ C and C ∈ GL(3,C) such that
(3.23)

Φ(p,q)=C



µ1(p)µ2(q)+µ2(p)µ1(q)
2 c

µ1(p)µ2(q)−µ2(p)µ1(q)
2 c′

µ1(p)µ2(q)−µ2(p)µ1(q)
2

0 0 0

0 0 0


C−1,

for all p, q ∈ G, or

(3.24) Φ(p, q) = Cµ(pq)

 1 a1(pq
−1) a2(pq

−1)
0 0 0
0 0 0

C−1 p, q ∈ G.

(2) If Φ(e, e) is a 2-dimensional projection then there exists C1 ∈ GL(3,C) such
that

(3.25) Φ = C1

 ϕ11 ϕ12 ϕ13
ϕ21 ϕ22 ϕ23
0 0 0

C−1
1 ,

in which the block matrices(
ϕ13
ϕ23

)
and

(
ϕ11 ϕ12
ϕ21 ϕ22

)
are given by

(3.26)
(
ϕ13
ϕ23

)
= C(Uα+ U ◦ σβ) and

(
ϕ11 ϕ12
ϕ21 ϕ22

)
= C

U + U ◦ σ
2

C−1,

where α, β ∈ C2 and U : G −→ M2(C) has one of the following 6 forms:

U1(p, q) =

(
µ1(p)µ2(q) 0

0 γ1(p)γ2(q)

)
p, q ∈ G,

U2(p, q) =

(
µ1(p)µ2(q) 0

0 γ(pq)(1 + a(pq−1))

)
p, q ∈ G,

U3(p, q) =

(
µ(pq)(1 + a1(pq

−1)) 0
0 γ(pq)(1 + a2(pq

−1))

)
p, q ∈ G,

U4(p, q) = µ1(p)µ2(q)

(
1 a1(p) + a2(q)
0 1

)
p, q ∈ G,

U5(p, q) = µ(pq)

(
1 a1(p) + a2(q) + ψ(pq−1)
0 1

)
p, q ∈ G,

U6(p, q) = µ(pq)

(
1 + a(pq−1) ∗

0 1 + a(pq−1)

)
p, q ∈ G,

with ∗ = c(a(pq−1))3+3c(a(pq−1))2+a(pq)+a(pq)a(pq−1)+a1(pq
−1), in which

C ∈ GL(2,C), µ, γ, µ1, µ2, γ1, γ2,∈ M (G) \ {0}, a, a1, a2 ∈ A (G), ψ ∈ S (G)
and c ∈ C.
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Proof. We use similar computations to those used in the proof of Proposition
3.2. The equation (1.3) can be reformulated as follows:

(3.27) Φ(xy) + Φ(σ(y)x) = 2Φ(y)Φ(x) x, y ∈ G.

Writing

(3.28) Φ =

 ϕ11 ϕ12 ϕ13
ϕ21 ϕ22 ϕ23
ϕ31 ϕ32 ϕ33

 .

Up to a similarity if Φ(e) is a projection then it can be taken as the orthogonal
projection on the first canonical basis vector of C3, so that

(3.29) Φ(e) =

 1 0 0
0 0 0
0 0 0


in the case of 1-dimensional projection and

(3.30) Φ(e) =

 1 0 0
0 1 0
0 0 0


in the case of 2-dimensional projection. Taking y = e in (3.27) we find that
Φ(x) = Φ(e)Φ(x) for all x ∈ G then, if Φ(e) has the form (3.29) we get
ϕ21 = ϕ22 = ϕ23 = ϕ31 = ϕ32 = ϕ33 = 0 and ϕ11, ϕ12, ϕ13 are solutions of the
scalar d’Alembert’s and Wilson’s functional equations respectively:

(3.31) ϕ11(xy) + ϕ11(σ(y)x) = 2ϕ11(y)ϕ11(x) x, y ∈ G,

(3.32) ϕ12(xy) + ϕ12(σ(y)x) = 2ϕ11(y)ϕ12(x) x, y ∈ G,

(3.33) ϕ13(xy) + ϕ13(σ(y)x) = 2ϕ11(y)ϕ13(x) x, y ∈ G,

such that ϕ11(e) = 1 and ϕ12(e) = ϕ13(e) = 0. Finally the formulas of [14]
imply the first statement.

If Φ(e) has the form (3.30) then ϕ31 = ϕ32 = ϕ33 = 0 and

φ2 :=

(
ϕ13
ϕ23

)
and Φ2 :=

(
ϕ11 ϕ12
ϕ21 ϕ22

)
verify the 2-dimensional variants of d’Alembert’s and Wilson’s functional equa-
tions respectively:

(3.34)
{

Φ2(xy) + Φ2(σ(y)x) = 2Φ2(y)Φ2(x) x, y ∈ G,
Φ2(e) = I2.

and

(3.35) φ2(xy) + φ2(σ(y)x) = 2Φ2(y)φ2(x) x, y ∈ G.
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It is obvious that Φ2 is abelian (In fact its matrix elements are some of the
matrix elements of Φ), then using [14, Theorem 3.3] allows us to conclude that

(3.36) φ2 = C(Uα+ U ◦ σβ) and Φ2 = C
U + U ◦ σ

2
C−1,

such that α, β ∈ C2 and U : G −→ M2(C) has one of the 6 forms cited in the
second statement of the proposition. □

4. Vector-matrix variant of Wilson’s functional equation

The present section is dedicated to show that the solutions of the functional
equation (1.4) are abelian if the unknown function f is belonging to Fn, and
furthermore that Φ is a solution of the n-dimensional version of the variant of
d’Alembert’s functional equation (1.3). A set of main results are established
for that goal, which is essentially Theorem 4.1.

All results of this section (Lemmata 4.1, 4.2 and 4.3 and Theorem 4.1)
contain the hypothesis that Φ is symmetric, that is Φ = Φ ◦ σ.

Lemma 4.1. Let the pair f : M −→ Cn, Φ : M −→ Mn(C) be a solution of
(1.4). Then (2.4) holds and f is central.

Proof. By replacing (p, q) by (e, e) in equation (1.4) we get

Φ(r, s)f(e, e) =
f(r, s) + f(s, r)

2
for all r, s ∈M.

By using that Φ is symmetric and by a simple computation we get

(4.1) [Φ(pr, qs) + Φ(sp, rq)]f(e, e) = 2Φ(r, s)Φ(p, q)f(e, e) p, q, r, s ∈M.

By similar computations to those of proofs of Lemma 2.1 and Proposition 3.1,
it follows

Φ(p, q)Φ(r, s)f(e, e) = Φ(r, s)Φ(p, q)f(e, e) for all (p, q), (r, s) ∈M,

and

Φ((p, q)(r, s))f(e, e) = Φ((r, s)(p, q))f(e, e) for all (p, q), (r, s) ∈M.

This can be written as follows{
Φ(x)Φ(y)f(e) = Φ(y)Φ(x)f(e),
Φ(xy)f(e) = Φ(yx)f(e) for all x, y ∈M.

Since (2.4) holds, Proposition 2.1 shows that f is central. □

Lemma 4.2. Let the pair f : M −→ Cn, Φ : M −→ Mn(C) be a solution of
(1.4) such that f ∈ Fn. Then

(4.2) Φ(w, e)Φ(q, e) = Φ(q, e)Φ(w, e) for all q, w ∈M.
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Proof. First, we can easily show that fe is also a solution of (1.4) since Φ is
symmetric. Then we have a right to use the identity (2.8), so

fe(xyz) = Φ(z)fe(xy) + Φ(y)fe(xz) + Φ(yz)fe(x)− 2Φ(y)Φ(z)fe(x)

for all x, y, z ∈M . Using this for x = (p, u); y = (q, e); z = (e, w) yields

fe(pq, uw) = Φ(e, w)fe(pq, u) + Φ(q, e)fe(p, uw) + Φ(q, w)fe(p, u)

− 2Φ(q, e)Φ(e, w)fe(p, u).

Switching p with u and q with w and taking into consideration that Φ and fe
are both symmetric lead to

Φ(w, e)Φ(q, e)fe(u, p) = Φ(q, e)Φ(w, e)fe(u, p),

that is

(4.3) Φ(w, e)Φ(q, e)fe = Φ(q, e)Φ(w, e)fe for all q, w ∈M.

On the other hand fo is also a solution of (1.4), so by using (2.8), we can write

(4.4) fo(xyz) = Φ(z)fo(xy) + Φ(y)fo(xz) + Φ(yz)fo(x)− 2Φ(y)Φ(z)fo(x)

for all x, y, z ∈ M . Taking into account that fo(e) = 0 the last identity with
x = e implies

(4.5) fo(yz) = Φ(z)fo(y) + Φ(y)fo(z).

So, we get

(4.6) fo(xyz) = Φ(yz)fo(x) + Φ(x)fo(yz) for all x, y, z ∈M.

Then (4.4) and (4.6) yield

2Φ(y)Φ(z)fo(x) = Φ(z)fo(xy) + Φ(y)fo(xz)− Φ(x)fo(yz).

By switching y with z and taking heed of the fact that fo is central (identity
(4.5)) we deduce

Φ(y)Φ(z)fo(x) = Φ(z)Φ(y)fo(x) for all x, y, z ∈M.

Particularly, for y = (w, e); z = (q, e) we have

(4.7) Φ(w, e)Φ(q, e)fo = Φ(q, e)Φ(w, e)fo for all q, w ∈M.

Since f = fo + fe, adding (4.3) to (4.7) leads to the desired result. □

Lemma 4.3. Let the pair f : M −→ Cn, Φ : M −→ Mn(C) be a solution of
(1.4). If f ∈ Fn then

(i) The map g := Φ(·, e) is central.
(ii) The maps f1 := f(·, e) and f2 := f(e, ·) satisfy the Kannappan

condition : f1(pqr) = f1(prq) and f2(pqr) = f2(prq) for all p, q, r ∈M .
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Proof. Since the pair f : M −→ Cn, Φ : M −→ Mn(C) is a solution of (1.4),
Lemma 4.1 ensures that (2.4) holds, then according to Proposition 2.1, Φ is a
solution of the functional equation

Φ(pr, qs) + Φ(ps, qr) = 2Φ(r, s)Φ(p, q) for all p, q, r, s ∈M.

Then for q = s = e we have

Φ(pr, e) = 2Φ(r, e)Φ(p, e)− Φ(p, r) for all p, r ∈M.

So
g(pr) = 2g(r)g(p)− Φ(p, r) for all p, r ∈M.

Since g(r) and g(p) commute (Lemma 4.2) and Φ(p, r) = Φ(r, p) for all p, r ∈
M , g is central. This proves (i).

By setting x = (p, e); y = (r, e) and z = (s, e) in the identity (2.8) we deduce

f(prs, e) = Φ(s, e)f(pr, e) + Φ(r, e)f(ps, e)

+ Φ(rs, e)f(p, e)− 2Φ(r, e)Φ(s, e)f(p, e).

That is

f1(prs) = g(s)f1(pr) + g(r)f1(ps) + g(rs)f1(p)− 2g(r)g(s)f1(p).

Since g(r) and g(s) commute and g is central, the map f1 satisfies the
Kannappan condition. Also we prove by similar computations that f2 satisfies
the same condition. This completes the proof. □

Theorem 4.1. Let the pair f :M −→ Cn, Φ :M −→ Mn(C) be a solution of
(1.4) such that f ∈ Fn. Then

(1) Φ is an abelian solution of the functional equation (1.3) such that
Φ(e, e) = In.

(2) f is abelian.

Proof. Let the pair f : M −→ Cn, Φ : M −→ Mn(C) be a solution of (1.4).
Using the same arguments as in the proof of Lemma 4.3 (i) we have

(4.8) Φ(pr, qs) + Φ(ps, qr) = 2Φ(r, s)Φ(p, q) for all p, q, r, s ∈M.

To prove the first statement we just have to check that Φ is a central map.
Let us first show that g := Φ(·, e) = Φ(e, ·) is an abelian function from M into
Mn(C). Setting s = e and r = abc for some a, b, c ∈M and taking into account
that f is central (Lemma 4.1), the equation (1.4) shows that

(4.9) f(pabc, q) + f(p, qabc) = 2Φ(abc, e)f(p, q) for all p, q, a, b, c ∈M,

which we write

(4.10) f((pabc, e)(e, q)) + f((e, qabc)(p, e)) = 2Φ(abc, e)f(p, q).

Using (2.3) to expand the left-hand side of (4.10) with x = (pabc, e), y = (e, q)
for the first term and with x = (e, qabc), y = (p, e) for the second, we get

2Φ(abc, e)f(p, q) = 2Φ(e, q)f(pabc, e)− f(qpabc, e)
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+ 2Φ(p, e)f(e, qabc)− f(e, pqabc).

Switching b and c then using Lemma 4.3 allow us to obtain the following

2Φ(acb, e)f(p, q) = 2Φ(abc, e)f(p, q) for all p, q, a, b, c ∈M.

Since f ∈ Fn, we conclude that g := Φ(·, e) satisfies the Kannappan condition.
Then it is an abelian function. As a result of (4.8) we have

Φ((p, r)(q, s)) = Φ(pq, rs) = Φ((pq, e)(e, rs)) = 2Φ(e, rs)Φ(pq, e)− Φ(pqrs, e)

for all p, q, r, s ∈M . Then

(4.11) Φ((p, r)(q, s)) = 2g(rs)g(pq)− g(pqrs) for all p, q, r, s ∈M,

and

(4.12) Φ((q, s)(p, r)) = 2g(sr)g(qp)− g(qpsr) for all p, q, r, s ∈M.

Since g is abelian, we conclude from (4.11) and (4.12) that Φ is central. More-
over Proposition 3.1 shows that Φ is abelian. This proves (1).

Taking into consideration the centrality of Φ and f and the fact that the
matrices Φ(y) and Φ(z) commute (This follows from Lemma 4.1 in combination
with Proposition 2.1 (4)), the identity (2.8) shows that f is abelian. This proves
(2) and completes the proof. □

Note 1. Let (f,Φ) satisfies (1.4) such that f /∈ Fn then f remains abelian. To
show this we first need to recall that equation (1.4) can be reformulated as

(4.13)
{
f(xy) + f(σ(y)x) = 2Φ(y)f(x) x, y ∈M,
Φ(x) = Φ ◦ σ(x) x ∈M.

If n = 1 then f /∈ Fn means that f = 0, so f is clearly abelian. If n > 1 the
sub-case dim⟨{f(x) ∈ Cn|x ∈M}⟩ = 0 means that f = 0, then f is abelian.

From now we may assume that dim⟨{f(x) ∈ Cn|x ∈ M}⟩ = k for some
k ∈ N∗ strictly less than n, that is

U := span{f(x) ∈ Cn|x ∈M} = span {ui ∈ Cn|i = 1, . . . , k}

for some linearly independent vectors (ui)i∈{1,...,k} ∈ Cn. Then there exists a
set of scalar functions on M : (fi)i∈{1,...,k} such that

(4.14) f(x) =

k∑
i=1

fi(x)ui x ∈M.

Using (2.5) ensures the existence of a set of scalar functions on M : ϕij , i, j ∈
{1, . . . , k} such that

(4.15) Φ(x)uj =

k∑
i=1

ϕij(x)ui x ∈M,
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for j ∈ {1, . . . , k} . Substituting f and Φ in (4.13) shows that φk := [f1, . . . , fk]
T

and Φk := (ϕij)i,j∈{1,...,k} satisfy:

φk(xy) + φk(σ(y)x) = 2Φk(y)φk(x), x, y ∈M.

Since (ui)i∈{1,...,k} are linearly independent, the components of φk are linearly
independent, that is, φk ∈ Fk. Then Theorem 4.1 shows that φk is abelian.
Consequently, we deduce from (4.14) that f is abelian.

Note 2. If n > 1 and dim⟨{f(x) ∈ Cn|x ∈ M}⟩ = k for some k ∈ N∗ strictly
less than n then it is immediate to see from the formula (4.15) (because Φk is
abelian by Theorem 4.1), that the operator valued function x 7→ Φ(x)|U from
M to L(U) is abelian.
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