Acknowledgement
This work was supported by the Incheon National University Research Grant in 2024.
References
- D.-H. Jiang, T. Satoh, S. H. Tung, and C.-C. Kuo, Sustainable alternatives to nondegradable medical plastics, ACS Sustain. Chem. Eng., 10, 4792-4806 (2022). https://doi.org/10.1021/acssuschemeng.2c00160
- S. Nanda, B. R. Patra, R. Patel, J. Bakos, and A. K. Dalai, Innovations in applications and prospects of bioplastics and biopolymers: A review, Environ. Chem. Lett., 20, 379-395 (2022). https://doi.org/10.1007/s10311-021-01334-4
- K. W. Meereboer, M. Misra, and A. K. Mohanty, Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites, Green Chem., 22, 5519-5558 (2020). https://doi.org/10.1039/D0GC01647K
- S. Pathak, C. Sneha, and B. B. Mathew, Bioplastics: Its timeline based scenario & challenges, J. Polym. Biopolym. Phys. Chem., 2, 84-90 (2014).
- A. Samir, F. H. Ashour, A. A. Hakim, and M. Bassyouni, Recent advances in biodegradable polymers for sustainable applications, npj Mater. Degrad., 6, 68 (2022).
- S. Kim, H. N. Thi, J. Kang, J. Hwang, S. Kim, S. Park, J. Lee, M. H. Abdellah, G. Szekely, J. S. Lee, and J. F. Kim, Sustainable fabrication of solvent resistant biodegradable cellulose membranes using green solvents, Chem. Eng. J., 494, 153201 (2024).
- L. T. Hao, S. Ju, D. K. Hwang, D. S. Hwang, Y. S. Ok, S. Y. Hwang, H. J. Kim, H. Jeon, J. Park, and D. X. Oh, Optimizing bioplastics translation, Nat. Rev. Bioeng., 2, 289-304 (2024). https://doi.org/10.1038/s44222-023-00142-5
- M. Meng, S. Wang, M. Xiao, and Y. Meng, Recent progress in modification and preparations of the promising biodegradable plastics: Polylactide and poly(butylene adipate-co-terephthalate), Sustain. Polym. Energy, 1, 10006 (2023).
- J. M. Chai, T. S. M. Amelia, G. K. Mouriya, K. Bhubalan, A.-A. A. Amirul, S. Vigneswari, and S. Ramakrishna, Surface-modified highly biocompatible bacterial-poly(3-hydroxybutyrate-co-4-hydroxybutyrate): A review on the promising next-generation biomaterial, Polymers, 13, 51 (2020).
- L. Aliotta, M. Seggiani, A. Lazzeri, V. Gigante, and P. Cinelli, A brief review of poly (butylene succinate)(PBS) and its main copolymers: synthesis, blends, composites, biodegradability, and applications, Polymers, 14, 844 (2022).
- L. Szczesniak, A. Rachocki, and J. Tritt-Goc, Glass transition temperature and thermal decomposition of cellulose powder, Cellulose, 15, 445-451 (2008). https://doi.org/10.1007/s10570-007-9192-2
- D. Domene-Lopez, J. C. Garcia-Quesada, I. Martin-Gullon, and M. G. Montalban, Influence of starch composition and molecular weight on physicochemical properties of biodegradable films, Polymers, 11, 1084 (2019).
- L. Dai, C. Qiu, L. Xiong, and Q. Sun, Characterisation of corn starch-based films reinforced with taro starch nanoparticles, Food Chem., 174, 82-88 (2015).
- J. Pang, M. Wu, Q. Zhang, X. Tan, F. Xu, X. Zhang, and R. Sun, Comparison of physical properties of regenerated cellulose films fabricated with different cellulose feedstocks in ionic liquid, Carbohydr. Polym., 121, 71-78 (2015). https://doi.org/10.1016/j.carbpol.2014.11.067
- S. Sun, J. R. Mitchell, W. MacNaughtan, T. J. Foster, V. Harabagiu, Y. Song, and Q. Zheng, Comparison of the mechanical properties of cellulose and starch films, Biomacromolecules, 11, 126-132 (2010). https://doi.org/10.1021/bm900981t
- M. Megha, M. Kamaraj, T. G. Nithya, S. GokilaLakshmi, P. Santhosh, and B. Balavaishnavi, Biodegradable polymers-Research and applications, Phys. Sci. Rev., 9, 949-972 (2024).
- K. J. Edgar, C. M. Buchanan, J. S. Debenham, P. A. Rundquist, B. D. Seiler, M. C. Shelton, and D. Tindall, Advances in cellulose ester performance and application, Prog. Polym. Sci., 26, 1605-1688 (2001). https://doi.org/10.1016/S0079-6700(01)00027-2
- W. Leal Filho, A. L. Salvia, A. Bonoli, U. A. Saari, V. Voronova, M. Kloga, S. S. Kumbhar, K. Olszewski, D. M. De Quevedo, and J. Barbir, An assessment of attitudes towards plastics and bioplastics in Europe, Sci. Total Environ., 755, 142732 (2021).
- N. S. Mat Aron, K. S. Khoo, K. W. Chew, P. L. Show, W. H. Chen, and T. H. P. Nguyen, Sustainability of the four generations of biofuels-A review, Int. J. Energy Res., 44, 9266-9282 (2020). https://doi.org/10.1002/er.5557
- S. Pierobon, X. Cheng, P. Graham, B. Nguyen, E. Karakolis, and D. Sinton, Emerging microalgae technology: A review, Sustain. Energy Fuels, 2, 13-38 (2018). https://doi.org/10.1039/C7SE00236J
- S. K. Bardhan, S. Gupta, M. Gorman, and M. A. Haider, Biorenewable chemicals: Feedstocks, technologies and the conflict with food production, Renew. Sustain. Energy Rev., 51, 506-520 (2015). https://doi.org/10.1016/j.rser.2015.06.013
- M. E. Grigore, Methods of recycling, properties and applications of recycled thermoplastic polymers, Recycling, 2, 24 (2017).
- M. C. Meghana, C. Nandhini, L. Benny, L. George, and A. Varghese, A road map on synthetic strategies and applications of biodegradable polymers, Polym. Bull., 80, 11507-11556 (2023). https://doi.org/10.1007/s00289-022-04565-9
- I. N. Vikhareva, E. A. Buylova, G. U. Yarmuhametova, G. K. Aminova, and A. K. Mazitova, An overview of the main trends in the creation of biodegradable polymer materials, J. Chem., 2021, 5099705 (2021).
- G. X. Wang, D. Huang, J. H. Ji, C. Volker, and F. R. Wurm, Seawater-degradable polymers-Fighting the marine plastic pollution, Adv. Sci., 8, 2001121 (2021).
- N.-A. A. B. Taib, M. R. Rahman, D. Huda, K. K. Kuok, S. Hamdan, M. K. B. Bakri, M. R. M. B. Julaihi, and A. Khan, A review on poly lactic acid (PLA) as a biodegradable polymer, Polym. Bull., 80, 1179-1213 (2023). https://doi.org/10.1007/s00289-022-04160-y
- A. K. Maurya, F. M. de Souza, T. Dawsey, and R. K. Gupta, Biodegradable polymers and composites: Recent development and challenges, Polym. Compos., 45, 2896-2918 (2024). https://doi.org/10.1002/pc.28023
- Y. Zhong, P. Godwin, Y. Jin, and H. Xiao, Biodegradable polymers and green-based antimicrobial packaging materials: A minireview, Adv. Ind. Eng. Polym. Res., 3, 27-35 (2020).
- Y. Hu, W. Daoud, K. Cheuk, and C. Lin, Newly developed techniques on polycondensation, ring-opening polymerization and polymer modification: Focus on poly(lactic acid), Materials, 9, 133 (2016).
- C. Weber, V. Haugaard, R. Festersen, and G. Bertelsen, Production and applications of biobased packaging materials for the food industry, Food Addit. Contam., 19, 172-177 (2002). https://doi.org/10.1080/02652030110087483
- S. P. Bangar, W. S. Whiteside, A. O. Ashogbon, and M. Kumar, Recent advances in thermoplastic starches for food packaging: A review, Food Packaging Shelf Life, 30, 100743 (2021).
- J. Jian, Z. Xiangbin, and H. Xianbo, An overview on synthesis, properties and applications of poly(butylene-adipate-co-terephthalate)-PBAT, Adv. Ind. Eng. Polym. Res., 3, 19-26 (2020).
- A. de Matos Costa, A. Crocitti, L. Hecker De Carvalho, S. Carroccio, P. Cerruti, and G. Santagata, Properties of biodegradable films based on poly(butylene succinate)(PBS) and poly (butylene adipate-co-terephthalate)(PBAT) blends, Polymers, 12, 2317 (2020).
- D. Zhao, Y. Zhu, W. Cheng, W. Chen, Y. Wu, and H. Yu, Cellulose-based flexible functional materials for emerging intelligent electronics, Adv. Mater., 33, 2000619 (2021).
- W. Liu, K. Liu, H. Du, T. Zheng, N. Zhang, T. Xu, B. Pang, X. Zhang, C. Si, and K. Zhang, Cellulose nanopaper: Fabrication, functionalization, and applications, Nano-Micro Lett., 14, 104 (2022).
- K. Jedvert and T. Heinze, Cellulose modification and shaping-A review, J. Polym. Eng., 37, 845-860 (2017). https://doi.org/10.1515/polyeng-2016-0272
- T. Li, C. Chen, A. H. Brozena, J. Zhu, L. Xu, C. Driemeier, J. Dai, O. J. Rojas, A. Isogai, and L. Wagberg, Developing fibrillated cellulose as a sustainable technological material, Nature, 590, 47-56 (2021). https://doi.org/10.1038/s41586-020-03167-7
- M. Barletta, C. Aversa, M. Ayyoob, A. Gisario, K. Hamad, M. Mehrpouya, and H. Vahabi, Poly(butylene succinate)(PBS): Materials, processing, and industrial applications, Prog. Polym. Sci., 132, 101579 (2022).
- S. A. Rafiqah, A. Khalina, A. S. Harmaen, I. A. Tawakkal, K. Zaman, M. Asim, M. Nurrazi, and C. H. Lee, A review on properties and application of bio-based poly(butylene succinate), Polymers, 13, 1436 (2021).
- J. M. Luengo, B. Garcia, A. Sandoval, G. Naharro, and E. R. Olivera, Bioplastics from microorganisms, Curr. Opin. Microbiol., 6, 251-260 (2003). https://doi.org/10.1016/S1369-5274(03)00040-7
- V. Sharma, R. Sehgal, and R. Gupta, Polyhydroxyalkanoate (PHA): properties and modifications, Polymer, 212, 123161 (2021).
- S. Dhania, M. Bernela, R. Rani, M. Parsad, S. Grewal, S. Kumari, and R. Thakur, Scaffolds the backbone of tissue engineering: Advancements in use of polyhydroxyalkanoates (PHA), Int. J. Biol. Macromol, 208, 243-259 (2022). https://doi.org/10.1016/j.ijbiomac.2022.03.030
- Z. Luo, Y. L. Wu, Z. Li, and X. J. Loh, Recent progress in polyhydroxyalkanoates-based copolymers for biomedical applications, Biotechnol. J., 14, 1900283 (2019).
- M. Dhaval, S. Sharma, K. Dudhat, and J. Chavda, Twin-screw extruder in pharmaceutical industry: History, working principle, applications, and marketed products: An in-depth review, J. Pharm. Innov., 17, 294-318 (2022). https://doi.org/10.1007/s12247-020-09520-7
- H. Okubo, H. Kaneyasu, T. Kimura, P. Phanthong, and S. Yao, Effects of a twin-screw extruder equipped with a molten resin reservoir on the mechanical properties and microstructure of recycled waste plastic polyethylene pellet moldings, Polymers, 13, 1058 (2021).
- A. Lewandowski and K. Wilczynski, Modeling of twin screw extrusion of polymeric materials, Polymers, 14, 274 (2022).
- A. Pietrosanto, P. Scarfato, L. Di Maio, M. R. Nobile, and L. Incarnato, Evaluation of the suitability of poly(lactide)/poly(butyleneadipate-co-terephthalate) blown films for chilled and frozen food packaging applications, Polymers, 12, 804 (2020).
- W. Chen, C. Qi, Y. Li, and H. Tao, The degradation investigation of biodegradable PLA/PBAT blend: Thermal stability, mechanical properties and PALS analysis, Radiat. Phys. Chem., 180, 109239 (2021).
- R. Muthuraj, M. Misra, and A. K. Mohanty, Biodegradable poly (butylene succinate) and poly(butylene adipate-co-terephthalate) blends: Reactive extrusion and performance evaluation, J. Polym. Environ., 22, 336-349 (2014). https://doi.org/10.1007/s10924-013-0636-5
- Y. Han, J. Shi, L. Mao, Z. Wang, and L. Zhang, Improvement of compatibility and mechanical performances of PLA/PBAT composites with epoxidized soybean oil as compatibilizer, Ind. Eng. Chem. Res., 59, 21779-21790 (2020). https://doi.org/10.1021/acs.iecr.0c04285
- Y. Kim and J. L. White, Formation of polymer nanocomposites with various organoclays, J. Appl. Polym. Sci., 96, 1888-1896 (2005). https://doi.org/10.1002/app.21581
- H. Moustafa, N. El Kissi, A. I. Abou-Kandil, M. S. Abdel-Aziz, and A. Dufresne, PLA/PBAT bionanocomposites with antimicrobial natural rosin for green packaging, ACS Appl. Mater. Interfaces, 9, 20132-20141 (2017). https://doi.org/10.1021/acsami.7b05557
- J. M. Raquez, Y. Nabar, R. Narayan, and P. Dubois, In situ compatibilization of maleated thermoplastic starch/polyester melt-blends by reactive extrusion, Polym. Eng. Sci., 48, 1747-1754 (2008). https://doi.org/10.1002/pen.21136
- M. Dammak, Y. Fourati, Q. Tarres, M. Delgado-Aguilar, P. Mutje, and S. Boufi, Blends of PBAT with plasticized starch for packaging applications: Mechanical properties, rheological behaviour and biodegradability, Ind. Crops. Prod., 144, 112061 (2020).
- Y. Fourati, Q. Tarres, M. Delgado-Aguilar, P. Mutje, and S. Boufi, Cellulose nanofibrils reinforced PBAT/TPS blends: Mechanical and rheological properties, Int. J. Biol. Macromol., 183, 267-275 (2021). https://doi.org/10.1016/j.ijbiomac.2021.04.102
- A. K. Kesari, A. M. Mulla, S. M. Razak, C. K. Munagala, and V. Aniya, Cellulose nanocrystals engineered TPS/PBAT granulation through extrusion process and application for compostable carry bags, J. Ind. Eng. Chem., 136, 623-634 (2024). https://doi.org/10.1016/j.jiec.2024.02.051
- L. Lai, S. Wang, J. Li, P. Liu, L. Wu, H. Wu, J. Xu, S. J. Severtson, and W.-J. Wang, Stiffening, strengthening, and toughening of biodegradable poly(butylene adipate-co-terephthalate) with a low nanoinclusion usage, Carbohydr. Polym., 247, 116687 (2020).
- C. Li, F. Chen, B. Lin, C. Zhang, and C. Liu, High content corn starch/poly (butylene adipate-co-terephthalate) composites with high-performance by physical-chemical dual compatibilization, Eur. Polym. J., 159, 110737 (2021).
- H. Pan, Z. Li, J. Yang, X. Li, X. Ai, Y. Hao, H. Zhang, and L. Dong, The effect of MDI on the structure and mechanical properties of poly(lactic acid) and poly(butylene adipate-co-butylene terephthalate) blends, RSC Adv., 8, 4610-4623 (2018). https://doi.org/10.1039/C7RA10745E
- K. Cai, X. Wang, C. Yu, J. Zhang, S. Tu, and J. Feng, Enhancing the mechanical properties of PBAT/thermoplastic starch (TPS) biodegradable composite films through a dynamic vulcanization process, ACS Sustain. Chem. Eng., 12, 1573-1583 (2024). https://doi.org/10.1021/acssuschemeng.3c06847
- C. Winotapun, M. Tameesrisuk, P. Sirirutbunkajal, P. Sungdech, and P. Leelaphiwat, Enhancing gas transmission rate of PBS/PBAT composite films: A study on microperforated film solutions for mango storage, ACS Omega, 9, 3469-3479 (2024).
- A. Bher, P. C. Mayekar, R. A. Auras, and C. E. Schvezov, Biodegradation of biodegradable polymers in mesophilic aerobic environments, Int. J. Mol. Sci., 23, 12165 (2022).
- V. Vatanpour, M. E. Pasaoglu, H. Barzegar, O. O. Teber, R. Kaya, M. Bastug, A. Khataee, and I. Koyuncu, Cellulose acetate in fabrication of polymeric membranes: A review, Chemosphere, 295, 133914 (2022).
- R. Geyer, J. R. Jambeck, and K. L. Law, Production, use, and fate of all plastics ever made, Sci. Adv., 3, e1700782 (2017).
- H. Y. Nguyen Thi, S. Kim, B. T. Duy Nguyen, D. Lim, S. Kumar, H. Lee, G. Szekely, and J. F. Kim, Closing the sustainable life cycle loop of membrane technology via a cellulose biomass platform, ACS Sustain. Chem. Eng., 10, 2532-2544 (2022). https://doi.org/10.1021/acssuschemeng.1c08554
- C. Xiong, T. Wang, J. Han, Z. Zhang, and Y. Ni, Recent research progress of paper-based supercapacitors based on cellulose, Energy Environ. Mater., 7, e12651 (2024).
- Y. Wang, T. Xu, K. Liu, M. Zhang, Q. Zhao, Q. Liang, and C. Si, Nanocellulose-based advanced materials for flexible supercapacitor electrodes, Ind. Crops Prod., 204, 117378 (2023).
- V. K. Guna, G. Murugesan, B. H. Basavarajaiah, M. Ilangovan, S. Olivera, V. Krishna, and N. Reddy, Plant-based completely biodegradable printed circuit boards, IEEE Trans. Electron Devices, 63, 4893-4898 (2016). https://doi.org/10.1109/TED.2016.2619983
- E. Bozo, H. Ervasti, N. Halonen, S. H. H. Shokouh, J. Tolvanen, O. Pitkanen, T. Jarvinen, P. S. Palvolgyi, A. Szamosvolgyi, and A. Sapi, Bioplastics and carbon-based sustainable materials, components, and devices: toward green electronics, ACS Appl. Mater. Interfaces., 13, 49301-49312 (2021). https://doi.org/10.1021/acsami.1c13787
- A. Kirillova, T. R. Yeazel, D. Asheghali, S. R. Petersen, S. Dort, K. Gall, and M. L. Becker, Fabrication of biomedical scaffolds using biodegradable polymers, Chem. Rev., 121, 11238-11304 (2021). https://doi.org/10.1021/acs.chemrev.0c01200
- P. Zahedi, Z. Karami, I. Rezaeian, S. H. Jafari, P. Mahdaviani, A. H. Abdolghaffari and M. Abdollahi, Preparation and performance evaluation of tetracycline hydrochloride loaded wound dressing mats based on electrospun nanofibrous poly(lactic acid)/poly(ϵ-caprolactone) blends, J. Appl. Polym. Sci., 124, 4174-4183 (2012). https://doi.org/10.1002/app.35372
- A. Marcano, N. Bou Haidar, S. Marais, J.-M. Valleton, and A. C. Duncan, Designing biodegradable PHA-based 3D scaffolds with antibiofilm properties for wound dressings: Optimization of the microstructure/nanostructure, ACS Biomater. Sci. Eng., 3, 3654-3661 (2017). https://doi.org/10.1021/acsbiomaterials.7b00552