DOI QR코드

DOI QR Code

Applications of Biodegradable Polymers in High Value Industries

생분해성 고분자의 고부가가치산업 응용연구동향

  • JeongSun Hwang (Department of Energy and Chemical Engineering, Incheon National University) ;
  • Hai Yen Nguyen Thi (Department of Energy and Chemical Engineering, Incheon National University) ;
  • Jeong F. Kim (Department of Energy and Chemical Engineering, Incheon National University)
  • 황정선 (인천대학교 에너지화학공학과) ;
  • 응우엔티 하이옌 (인천대학교 에너지화학공학과) ;
  • 김정 (인천대학교 에너지화학공학과)
  • Received : 2024.06.30
  • Accepted : 2024.07.16
  • Published : 2024.08.10

Abstract

As the adverse environmental impacts due to plastic waste become more severe, there is an increasing demand for developing a sustainable ecosystem using biodegradable polymers. Biodegradable polymers are those that can be biochemically decomposed through the enzymatic activity of microorganisms. Currently, a variety of biodegradable polymers with varying properties is being investigated. In particular, polymer blends with an aim to control the biodegradation rate and mechanical properties are under active research. The biodegradable polymer industry, which has not yet reached economies of scale, does not have a cost advantage compared to petroleum-derived polymers. To overcome this challenge, there is an urgent need to expand its application fields to various high-value industries (separators, electronic materials, and medical fields). This review summarizes the current state-of-the-art biodegradable polymers, polymer blends, and recent research trends in new niche applications.

플라스틱 폐기물 처리에 대한 환경문제가 심각하게 대두되면서 생분해성 고분자를 이용한 지속 가능한 생태계 구축에 대한 관심이 높아지고 있다. 생분해성 고분자는 미생물의 효소작용을 통해 물질이 생화학적으로 분해되는 고분자를 의미하며, 현재 다양한 구조와 특성을 갖는 생분해성 고분자가 연구되고 있다. 특히, 생분해성 고분자의 생분해속도와 기계적 특성을 조절하기 위한 고분자 혼합에 대한 연구도 활발히 보고되고 있다. 아직 규모의 경제에 도달하지 못한 생분해성 고분자 산업은 일반 석유유래 고분자 대비 가격경쟁력을 갖추지 못하고 있으며, 이를 극복하기 위해 다양한 고부가 가치 산업(분리막, 전기 전자 소재, 의료 등)으로 응용분야를 확장하고 있다. 본 총설에서는 대표적인 생분해성 고분자의 종류 및 생분해성 고분자 혼합연구, 그리고 응용 분야에 대한 최근 연구 동향을 정리하였다.

Keywords

Acknowledgement

This work was supported by the Incheon National University Research Grant in 2024.

References

  1. D.-H. Jiang, T. Satoh, S. H. Tung, and C.-C. Kuo, Sustainable alternatives to nondegradable medical plastics, ACS Sustain. Chem. Eng., 10, 4792-4806 (2022). https://doi.org/10.1021/acssuschemeng.2c00160
  2. S. Nanda, B. R. Patra, R. Patel, J. Bakos, and A. K. Dalai, Innovations in applications and prospects of bioplastics and biopolymers: A review, Environ. Chem. Lett., 20, 379-395 (2022). https://doi.org/10.1007/s10311-021-01334-4
  3. K. W. Meereboer, M. Misra, and A. K. Mohanty, Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites, Green Chem., 22, 5519-5558 (2020). https://doi.org/10.1039/D0GC01647K
  4. S. Pathak, C. Sneha, and B. B. Mathew, Bioplastics: Its timeline based scenario & challenges, J. Polym. Biopolym. Phys. Chem., 2, 84-90 (2014).
  5. A. Samir, F. H. Ashour, A. A. Hakim, and M. Bassyouni, Recent advances in biodegradable polymers for sustainable applications, npj Mater. Degrad., 6, 68 (2022).
  6. S. Kim, H. N. Thi, J. Kang, J. Hwang, S. Kim, S. Park, J. Lee, M. H. Abdellah, G. Szekely, J. S. Lee, and J. F. Kim, Sustainable fabrication of solvent resistant biodegradable cellulose membranes using green solvents, Chem. Eng. J., 494, 153201 (2024).
  7. L. T. Hao, S. Ju, D. K. Hwang, D. S. Hwang, Y. S. Ok, S. Y. Hwang, H. J. Kim, H. Jeon, J. Park, and D. X. Oh, Optimizing bioplastics translation, Nat. Rev. Bioeng., 2, 289-304 (2024). https://doi.org/10.1038/s44222-023-00142-5
  8. M. Meng, S. Wang, M. Xiao, and Y. Meng, Recent progress in modification and preparations of the promising biodegradable plastics: Polylactide and poly(butylene adipate-co-terephthalate), Sustain. Polym. Energy, 1, 10006 (2023).
  9. J. M. Chai, T. S. M. Amelia, G. K. Mouriya, K. Bhubalan, A.-A. A. Amirul, S. Vigneswari, and S. Ramakrishna, Surface-modified highly biocompatible bacterial-poly(3-hydroxybutyrate-co-4-hydroxybutyrate): A review on the promising next-generation biomaterial, Polymers, 13, 51 (2020).
  10. L. Aliotta, M. Seggiani, A. Lazzeri, V. Gigante, and P. Cinelli, A brief review of poly (butylene succinate)(PBS) and its main copolymers: synthesis, blends, composites, biodegradability, and applications, Polymers, 14, 844 (2022).
  11. L. Szczesniak, A. Rachocki, and J. Tritt-Goc, Glass transition temperature and thermal decomposition of cellulose powder, Cellulose, 15, 445-451 (2008). https://doi.org/10.1007/s10570-007-9192-2
  12. D. Domene-Lopez, J. C. Garcia-Quesada, I. Martin-Gullon, and M. G. Montalban, Influence of starch composition and molecular weight on physicochemical properties of biodegradable films, Polymers, 11, 1084 (2019).
  13. L. Dai, C. Qiu, L. Xiong, and Q. Sun, Characterisation of corn starch-based films reinforced with taro starch nanoparticles, Food Chem., 174, 82-88 (2015).
  14. J. Pang, M. Wu, Q. Zhang, X. Tan, F. Xu, X. Zhang, and R. Sun, Comparison of physical properties of regenerated cellulose films fabricated with different cellulose feedstocks in ionic liquid, Carbohydr. Polym., 121, 71-78 (2015). https://doi.org/10.1016/j.carbpol.2014.11.067
  15. S. Sun, J. R. Mitchell, W. MacNaughtan, T. J. Foster, V. Harabagiu, Y. Song, and Q. Zheng, Comparison of the mechanical properties of cellulose and starch films, Biomacromolecules, 11, 126-132 (2010). https://doi.org/10.1021/bm900981t
  16. M. Megha, M. Kamaraj, T. G. Nithya, S. GokilaLakshmi, P. Santhosh, and B. Balavaishnavi, Biodegradable polymers-Research and applications, Phys. Sci. Rev., 9, 949-972 (2024).
  17. K. J. Edgar, C. M. Buchanan, J. S. Debenham, P. A. Rundquist, B. D. Seiler, M. C. Shelton, and D. Tindall, Advances in cellulose ester performance and application, Prog. Polym. Sci., 26, 1605-1688 (2001). https://doi.org/10.1016/S0079-6700(01)00027-2
  18. W. Leal Filho, A. L. Salvia, A. Bonoli, U. A. Saari, V. Voronova, M. Kloga, S. S. Kumbhar, K. Olszewski, D. M. De Quevedo, and J. Barbir, An assessment of attitudes towards plastics and bioplastics in Europe, Sci. Total Environ., 755, 142732 (2021).
  19. N. S. Mat Aron, K. S. Khoo, K. W. Chew, P. L. Show, W. H. Chen, and T. H. P. Nguyen, Sustainability of the four generations of biofuels-A review, Int. J. Energy Res., 44, 9266-9282 (2020). https://doi.org/10.1002/er.5557
  20. S. Pierobon, X. Cheng, P. Graham, B. Nguyen, E. Karakolis, and D. Sinton, Emerging microalgae technology: A review, Sustain. Energy Fuels, 2, 13-38 (2018). https://doi.org/10.1039/C7SE00236J
  21. S. K. Bardhan, S. Gupta, M. Gorman, and M. A. Haider, Biorenewable chemicals: Feedstocks, technologies and the conflict with food production, Renew. Sustain. Energy Rev., 51, 506-520 (2015). https://doi.org/10.1016/j.rser.2015.06.013
  22. M. E. Grigore, Methods of recycling, properties and applications of recycled thermoplastic polymers, Recycling, 2, 24 (2017).
  23. M. C. Meghana, C. Nandhini, L. Benny, L. George, and A. Varghese, A road map on synthetic strategies and applications of biodegradable polymers, Polym. Bull., 80, 11507-11556 (2023). https://doi.org/10.1007/s00289-022-04565-9
  24. I. N. Vikhareva, E. A. Buylova, G. U. Yarmuhametova, G. K. Aminova, and A. K. Mazitova, An overview of the main trends in the creation of biodegradable polymer materials, J. Chem., 2021, 5099705 (2021).
  25. G. X. Wang, D. Huang, J. H. Ji, C. Volker, and F. R. Wurm, Seawater-degradable polymers-Fighting the marine plastic pollution, Adv. Sci., 8, 2001121 (2021).
  26. N.-A. A. B. Taib, M. R. Rahman, D. Huda, K. K. Kuok, S. Hamdan, M. K. B. Bakri, M. R. M. B. Julaihi, and A. Khan, A review on poly lactic acid (PLA) as a biodegradable polymer, Polym. Bull., 80, 1179-1213 (2023). https://doi.org/10.1007/s00289-022-04160-y
  27. A. K. Maurya, F. M. de Souza, T. Dawsey, and R. K. Gupta, Biodegradable polymers and composites: Recent development and challenges, Polym. Compos., 45, 2896-2918 (2024). https://doi.org/10.1002/pc.28023
  28. Y. Zhong, P. Godwin, Y. Jin, and H. Xiao, Biodegradable polymers and green-based antimicrobial packaging materials: A minireview, Adv. Ind. Eng. Polym. Res., 3, 27-35 (2020).
  29. Y. Hu, W. Daoud, K. Cheuk, and C. Lin, Newly developed techniques on polycondensation, ring-opening polymerization and polymer modification: Focus on poly(lactic acid), Materials, 9, 133 (2016).
  30. C. Weber, V. Haugaard, R. Festersen, and G. Bertelsen, Production and applications of biobased packaging materials for the food industry, Food Addit. Contam., 19, 172-177 (2002). https://doi.org/10.1080/02652030110087483
  31. S. P. Bangar, W. S. Whiteside, A. O. Ashogbon, and M. Kumar, Recent advances in thermoplastic starches for food packaging: A review, Food Packaging Shelf Life, 30, 100743 (2021).
  32. J. Jian, Z. Xiangbin, and H. Xianbo, An overview on synthesis, properties and applications of poly(butylene-adipate-co-terephthalate)-PBAT, Adv. Ind. Eng. Polym. Res., 3, 19-26 (2020).
  33. A. de Matos Costa, A. Crocitti, L. Hecker De Carvalho, S. Carroccio, P. Cerruti, and G. Santagata, Properties of biodegradable films based on poly(butylene succinate)(PBS) and poly (butylene adipate-co-terephthalate)(PBAT) blends, Polymers, 12, 2317 (2020).
  34. D. Zhao, Y. Zhu, W. Cheng, W. Chen, Y. Wu, and H. Yu, Cellulose-based flexible functional materials for emerging intelligent electronics, Adv. Mater., 33, 2000619 (2021).
  35. W. Liu, K. Liu, H. Du, T. Zheng, N. Zhang, T. Xu, B. Pang, X. Zhang, C. Si, and K. Zhang, Cellulose nanopaper: Fabrication, functionalization, and applications, Nano-Micro Lett., 14, 104 (2022).
  36. K. Jedvert and T. Heinze, Cellulose modification and shaping-A review, J. Polym. Eng., 37, 845-860 (2017). https://doi.org/10.1515/polyeng-2016-0272
  37. T. Li, C. Chen, A. H. Brozena, J. Zhu, L. Xu, C. Driemeier, J. Dai, O. J. Rojas, A. Isogai, and L. Wagberg, Developing fibrillated cellulose as a sustainable technological material, Nature, 590, 47-56 (2021). https://doi.org/10.1038/s41586-020-03167-7
  38. M. Barletta, C. Aversa, M. Ayyoob, A. Gisario, K. Hamad, M. Mehrpouya, and H. Vahabi, Poly(butylene succinate)(PBS): Materials, processing, and industrial applications, Prog. Polym. Sci., 132, 101579 (2022).
  39. S. A. Rafiqah, A. Khalina, A. S. Harmaen, I. A. Tawakkal, K. Zaman, M. Asim, M. Nurrazi, and C. H. Lee, A review on properties and application of bio-based poly(butylene succinate), Polymers, 13, 1436 (2021).
  40. J. M. Luengo, B. Garcia, A. Sandoval, G. Naharro, and E. R. Olivera, Bioplastics from microorganisms, Curr. Opin. Microbiol., 6, 251-260 (2003). https://doi.org/10.1016/S1369-5274(03)00040-7
  41. V. Sharma, R. Sehgal, and R. Gupta, Polyhydroxyalkanoate (PHA): properties and modifications, Polymer, 212, 123161 (2021).
  42. S. Dhania, M. Bernela, R. Rani, M. Parsad, S. Grewal, S. Kumari, and R. Thakur, Scaffolds the backbone of tissue engineering: Advancements in use of polyhydroxyalkanoates (PHA), Int. J. Biol. Macromol, 208, 243-259 (2022). https://doi.org/10.1016/j.ijbiomac.2022.03.030
  43. Z. Luo, Y. L. Wu, Z. Li, and X. J. Loh, Recent progress in polyhydroxyalkanoates-based copolymers for biomedical applications, Biotechnol. J., 14, 1900283 (2019).
  44. M. Dhaval, S. Sharma, K. Dudhat, and J. Chavda, Twin-screw extruder in pharmaceutical industry: History, working principle, applications, and marketed products: An in-depth review, J. Pharm. Innov., 17, 294-318 (2022). https://doi.org/10.1007/s12247-020-09520-7
  45. H. Okubo, H. Kaneyasu, T. Kimura, P. Phanthong, and S. Yao, Effects of a twin-screw extruder equipped with a molten resin reservoir on the mechanical properties and microstructure of recycled waste plastic polyethylene pellet moldings, Polymers, 13, 1058 (2021).
  46. A. Lewandowski and K. Wilczynski, Modeling of twin screw extrusion of polymeric materials, Polymers, 14, 274 (2022).
  47. A. Pietrosanto, P. Scarfato, L. Di Maio, M. R. Nobile, and L. Incarnato, Evaluation of the suitability of poly(lactide)/poly(butyleneadipate-co-terephthalate) blown films for chilled and frozen food packaging applications, Polymers, 12, 804 (2020).
  48. W. Chen, C. Qi, Y. Li, and H. Tao, The degradation investigation of biodegradable PLA/PBAT blend: Thermal stability, mechanical properties and PALS analysis, Radiat. Phys. Chem., 180, 109239 (2021).
  49. R. Muthuraj, M. Misra, and A. K. Mohanty, Biodegradable poly (butylene succinate) and poly(butylene adipate-co-terephthalate) blends: Reactive extrusion and performance evaluation, J. Polym. Environ., 22, 336-349 (2014). https://doi.org/10.1007/s10924-013-0636-5
  50. Y. Han, J. Shi, L. Mao, Z. Wang, and L. Zhang, Improvement of compatibility and mechanical performances of PLA/PBAT composites with epoxidized soybean oil as compatibilizer, Ind. Eng. Chem. Res., 59, 21779-21790 (2020). https://doi.org/10.1021/acs.iecr.0c04285
  51. Y. Kim and J. L. White, Formation of polymer nanocomposites with various organoclays, J. Appl. Polym. Sci., 96, 1888-1896 (2005). https://doi.org/10.1002/app.21581
  52. H. Moustafa, N. El Kissi, A. I. Abou-Kandil, M. S. Abdel-Aziz, and A. Dufresne, PLA/PBAT bionanocomposites with antimicrobial natural rosin for green packaging, ACS Appl. Mater. Interfaces, 9, 20132-20141 (2017). https://doi.org/10.1021/acsami.7b05557
  53. J. M. Raquez, Y. Nabar, R. Narayan, and P. Dubois, In situ compatibilization of maleated thermoplastic starch/polyester melt-blends by reactive extrusion, Polym. Eng. Sci., 48, 1747-1754 (2008). https://doi.org/10.1002/pen.21136
  54. M. Dammak, Y. Fourati, Q. Tarres, M. Delgado-Aguilar, P. Mutje, and S. Boufi, Blends of PBAT with plasticized starch for packaging applications: Mechanical properties, rheological behaviour and biodegradability, Ind. Crops. Prod., 144, 112061 (2020).
  55. Y. Fourati, Q. Tarres, M. Delgado-Aguilar, P. Mutje, and S. Boufi, Cellulose nanofibrils reinforced PBAT/TPS blends: Mechanical and rheological properties, Int. J. Biol. Macromol., 183, 267-275 (2021). https://doi.org/10.1016/j.ijbiomac.2021.04.102
  56. A. K. Kesari, A. M. Mulla, S. M. Razak, C. K. Munagala, and V. Aniya, Cellulose nanocrystals engineered TPS/PBAT granulation through extrusion process and application for compostable carry bags, J. Ind. Eng. Chem., 136, 623-634 (2024). https://doi.org/10.1016/j.jiec.2024.02.051
  57. L. Lai, S. Wang, J. Li, P. Liu, L. Wu, H. Wu, J. Xu, S. J. Severtson, and W.-J. Wang, Stiffening, strengthening, and toughening of biodegradable poly(butylene adipate-co-terephthalate) with a low nanoinclusion usage, Carbohydr. Polym., 247, 116687 (2020).
  58. C. Li, F. Chen, B. Lin, C. Zhang, and C. Liu, High content corn starch/poly (butylene adipate-co-terephthalate) composites with high-performance by physical-chemical dual compatibilization, Eur. Polym. J., 159, 110737 (2021).
  59. H. Pan, Z. Li, J. Yang, X. Li, X. Ai, Y. Hao, H. Zhang, and L. Dong, The effect of MDI on the structure and mechanical properties of poly(lactic acid) and poly(butylene adipate-co-butylene terephthalate) blends, RSC Adv., 8, 4610-4623 (2018). https://doi.org/10.1039/C7RA10745E
  60. K. Cai, X. Wang, C. Yu, J. Zhang, S. Tu, and J. Feng, Enhancing the mechanical properties of PBAT/thermoplastic starch (TPS) biodegradable composite films through a dynamic vulcanization process, ACS Sustain. Chem. Eng., 12, 1573-1583 (2024). https://doi.org/10.1021/acssuschemeng.3c06847
  61. C. Winotapun, M. Tameesrisuk, P. Sirirutbunkajal, P. Sungdech, and P. Leelaphiwat, Enhancing gas transmission rate of PBS/PBAT composite films: A study on microperforated film solutions for mango storage, ACS Omega, 9, 3469-3479 (2024).
  62. A. Bher, P. C. Mayekar, R. A. Auras, and C. E. Schvezov, Biodegradation of biodegradable polymers in mesophilic aerobic environments, Int. J. Mol. Sci., 23, 12165 (2022).
  63. V. Vatanpour, M. E. Pasaoglu, H. Barzegar, O. O. Teber, R. Kaya, M. Bastug, A. Khataee, and I. Koyuncu, Cellulose acetate in fabrication of polymeric membranes: A review, Chemosphere, 295, 133914 (2022).
  64. R. Geyer, J. R. Jambeck, and K. L. Law, Production, use, and fate of all plastics ever made, Sci. Adv., 3, e1700782 (2017).
  65. H. Y. Nguyen Thi, S. Kim, B. T. Duy Nguyen, D. Lim, S. Kumar, H. Lee, G. Szekely, and J. F. Kim, Closing the sustainable life cycle loop of membrane technology via a cellulose biomass platform, ACS Sustain. Chem. Eng., 10, 2532-2544 (2022). https://doi.org/10.1021/acssuschemeng.1c08554
  66. C. Xiong, T. Wang, J. Han, Z. Zhang, and Y. Ni, Recent research progress of paper-based supercapacitors based on cellulose, Energy Environ. Mater., 7, e12651 (2024).
  67. Y. Wang, T. Xu, K. Liu, M. Zhang, Q. Zhao, Q. Liang, and C. Si, Nanocellulose-based advanced materials for flexible supercapacitor electrodes, Ind. Crops Prod., 204, 117378 (2023).
  68. V. K. Guna, G. Murugesan, B. H. Basavarajaiah, M. Ilangovan, S. Olivera, V. Krishna, and N. Reddy, Plant-based completely biodegradable printed circuit boards, IEEE Trans. Electron Devices, 63, 4893-4898 (2016). https://doi.org/10.1109/TED.2016.2619983
  69. E. Bozo, H. Ervasti, N. Halonen, S. H. H. Shokouh, J. Tolvanen, O. Pitkanen, T. Jarvinen, P. S. Palvolgyi, A. Szamosvolgyi, and A. Sapi, Bioplastics and carbon-based sustainable materials, components, and devices: toward green electronics, ACS Appl. Mater. Interfaces., 13, 49301-49312 (2021). https://doi.org/10.1021/acsami.1c13787
  70. A. Kirillova, T. R. Yeazel, D. Asheghali, S. R. Petersen, S. Dort, K. Gall, and M. L. Becker, Fabrication of biomedical scaffolds using biodegradable polymers, Chem. Rev., 121, 11238-11304 (2021). https://doi.org/10.1021/acs.chemrev.0c01200
  71. P. Zahedi, Z. Karami, I. Rezaeian, S. H. Jafari, P. Mahdaviani, A. H. Abdolghaffari and M. Abdollahi, Preparation and performance evaluation of tetracycline hydrochloride loaded wound dressing mats based on electrospun nanofibrous poly(lactic acid)/poly(ϵ-caprolactone) blends, J. Appl. Polym. Sci., 124, 4174-4183 (2012). https://doi.org/10.1002/app.35372
  72. A. Marcano, N. Bou Haidar, S. Marais, J.-M. Valleton, and A. C. Duncan, Designing biodegradable PHA-based 3D scaffolds with antibiofilm properties for wound dressings: Optimization of the microstructure/nanostructure, ACS Biomater. Sci. Eng., 3, 3654-3661 (2017). https://doi.org/10.1021/acsbiomaterials.7b00552