DOI QR코드

DOI QR Code

Advancements in External-Source-Induced Microfluidic Crystallization Techniques

외부 자극을 통한 미세유체장치 기반 결정화 기술

  • Jiye Jang (Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University) ;
  • Chang Hun Han (Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University) ;
  • Jieun Lee (Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University) ;
  • In Hwan Jung (Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University) ;
  • Bum Jun Park (Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University)
  • 장지예 (경희대학교 화학공학과 (4단계 BK21 교육연구단)) ;
  • 한창훈 (경희대학교 화학공학과 (4단계 BK21 교육연구단)) ;
  • 이지은 (경희대학교 화학공학과 (4단계 BK21 교육연구단)) ;
  • 정인환 (경희대학교 화학공학과 (4단계 BK21 교육연구단)) ;
  • 박범준 (경희대학교 화학공학과 (4단계 BK21 교육연구단))
  • Received : 2024.06.28
  • Accepted : 2024.07.15
  • Published : 2024.08.10

Abstract

This review explores recent advancements in microfluidic crystallization techniques utilizing energy from external sources on a small scale. We focus on four representative types of external sources: ultrasound, laser, microwave, and electric field, emphasizing their impact on crystal formation. This highlights the benefits of using external sources in crystallization, such as improved crystal quality, structure formation, and changes in physical properties. Providing a comprehensive overview of crystallization techniques employing external sources, the paper discusses the potential developments in the field of crystallization through the application of these external energy sources.

본 논문에서는 미세유체장치 기반 외부 자극에 의한 결정화 기술의 최근 발전에 대해 탐구한다. 초음파, 레이저, 마이크로파, 전기장과 같은 대표적인 네 가지 결정화 기법인 외부 자극의 종류에 대해 중점을 두어 외부 자극이 결정 성장에 미치는 영향을 강조한다. 결정 품질 향상, 구조 형성, 물리적 특성 변화 등의 이점을 강조하며 외부 자극을 통한 결정화(external-source-induced crystallization) 기술에 대한 포괄적인 개요를 제공하고 잠재적인 발전 가능성에 대해 논의한다.

Keywords

Acknowledgement

이 논문은 경희대 연구그룹육성 KHU-Fellowship 프로그램(GS-5-JO-NON-20222741)에 의하여 지원되었습니다.

References

  1. H.-h. Shi, Y. Xiao, S. Ferguson, X. Huang, N. Wang, and H.-x. Hao, Progress of crystallization in microfluidic devices, Lab Chip, 17, 2167-2185 (2017). https://doi.org/10.1039/C6LC01225F
  2. S. Zhang, C. J. J. Gerard, A. Ikni, G. Ferry, L. M. Vuillard, J. A. Boutin, N. Ferte, R. Grossier, N. Candoni, and S. Veesler, Microfluidic platform for optimization of crystallization conditions, J. Cryst. Growth, 472, 18-28 (2017). https://doi.org/10.1016/j.jcrysgro.2017.01.026
  3. F. Tajoli, N. Dengo, M. Mognato, P. Dolcet, G. Lucchini, A. Faresin, J.-D. Grunwaldt, X. Huang, D. Badocco, M. Maggini, C. Kubel, A. Speghini, T. Carofiglio, and S. Gross, Microfluidic crystallization of surfactant-free doped zinc sulfide nanoparticles for optical bioimaging applications, ACS Appl. Mater. Interfaces, 12, 44074-44087 (2020). https://doi.org/10.1021/acsami.0c13150
  4. N. Junius, S. Jaho, Y. Sallaz-Damaz, F. Borel, J.-B. Salmon, and M. Budayova-Spano, A microfluidic device for both on-chip dialysis protein crystallization and in situ X-ray diffraction, Lab Chip, 20, 296-310 (2020). https://doi.org/10.1039/C9LC00651F
  5. S. Vyawahare, A. D. Griffiths, and C. A. Merten, Miniaturization and parallelization of biological and chemical assays in microfluidic devices, Biol. Chem., 17, 1052-1065 (2010). https://doi.org/10.1016/j.chembiol.2010.09.007
  6. A. Feuerborn, A. Prastowo, P. R. Cook, and E. Walsh, Merging drops in a Teflon tube, and transferring fluid between them, illustrated by protein crystallization and drug screening, Lab Chip, 15, 3766-3775 (2015). https://doi.org/10.1039/C5LC00726G
  7. H. V. Nguyen, V. M. Phan, and T. S. Seo, High-throughput centrifugal microfluidic platform for multiplex respiratory virus diagnostics, Sens. Actuators B: Chem., 399, 134771 (2024).
  8. M. D. Luque de Castro, and F. Priego-Capote, Ultrasound-assisted crystallization (sonocrystallization), Ultrason. Sonochem., 14, 717-724 (2007). https://doi.org/10.1016/j.ultsonch.2006.12.004
  9. K.-i. Yuyama, T. Sugiyama, and H. Masuhara, Laser trapping and crystallization dynamics of l-phenylalanine at solution surface, J. Phys. Chem. Lett., 4, 2436-2440 (2013). https://doi.org/10.1021/jz401122v
  10. J. N. Lee, Y. W. Choi, B. J. Lee, and B. T. Ahn, Microwave-induced low-temperature crystallization of amorphous silicon thin films, J. Appl. Phys., 82, 2918-2921 (1997). https://doi.org/10.1063/1.366125
  11. R. Kacker, P. M. Salvador, G. S. J. Sturm, G. D. Stefanidis, R. Lakerveld, Z. K. Nagy, and H. J. M. Kramer, Microwave assisted direct nucleation control for batch crystallization: Crystal size control with reduced batch time, Cryst. Growth Des., 16, 440-446 (2016). https://doi.org/10.1021/acs.cgd.5b01444
  12. M. Taleb, C. Didierjean, C. Jelsch, J. P. Mangeot, B. Capelle, and A. Aubry, Crystallization of proteins under an external electric field, J. Cryst. Growth, 200, 575-582 (1999). https://doi.org/10.1016/S0022-0248(98)01409-2
  13. M. Jiang, C. D. Papageorgiou, J. Waetzig, A. Hardy, M. Langston, and R. D. Braatz, Indirect ultrasonication in continuous slug-flow crystallization, Cryst. Growth Des., 15, 2486-2492 (2015). https://doi.org/10.1021/acs.cgd.5b00263
  14. D. Rossi, R. Jamshidi, N. Saffari, S. Kuhn, A. Gavriilidis, and L. Mazzei, Continuous-flow sonocrystallization in droplet-based microfluidics, Cryst. Growth Des., 15, 5519-5529 (2015). https://doi.org/10.1021/acs.cgd.5b01153
  15. F. Valoppi, A. Salmi, M. Ratilainen, T. Puranen, O. Tommiska, J. Hyvonen, J. Heikkila, and E. Haeggstrom, Ultrasonic standing wave chamber for engineering microstructures of water- and lipid-based materials, Eng. Res. Express, 3, 016002 (2021).
  16. Y. Hattoria, K. Kadotab, T. Yanoa, A. Shimosakaa, H. Ichikawac, Y. Fukumoric, Y. Shirakawaa, and J. Hidaka, Fabrication of composite particles through single pass using a coaxial tube reactor, Chem. Eng. Process.: Process Intensif., 97, 233-241 (2015). https://doi.org/10.1016/j.cep.2015.05.016
  17. Z. Ma, A. Pang, W. Li, Y. Qi, and L. Zhang, Preparation and characterization of ultra-fine ammonium perchlorate crystals using a microfluidic system combined with ultrasonication, Chem. Eng. J., 405, 126516 (2021).
  18. X. He, R. Chen, X. Zhu, Q. Liao, and S. Li, Laser assisted microfluidic membrane evaporator for sample crystallization separation, Sep. Purif. Technol., 242, 116817 (2020).
  19. V. Korede, F. M. Penha, V. de Munck, L. Stam, T. Dubbelman, N. Nagalingam, M. Gutta, P. Cui, D. Irimia, A. E. D. M. van der Heijden, H. J. M. Kramer, and H. B. Eral, Design and validation of a droplet-based microfluidic system to study non-photochemical laser-induced nucleation of potassium chloride solutions, Cryst. Growth Des., 23, 6067-6080 (2023). https://doi.org/10.1021/acs.cgd.3c00591
  20. T. Hua, O. Gowayed, D. Grey-Stewart, B. A. Garetz, and R. L. Hartman, Microfluidic laser-induced nucleation of supersaturated aqueous KCl solutions, Cryst. Growth Des., 19, 3491-3497 (2019). https://doi.org/10.1021/acs.cgd.9b00362
  21. T. Hua, C. Valentin-Valentin, O. Gowayed, S. Lee, B. A. Garetz, and R. L. Hartman, Microfluidic laser-induced nucleation of supersaturated aqueous glycine solutions, Cryst. Growth Des., 20, 6502-6509 (2020). https://doi.org/10.1021/acs.cgd.0c00669
  22. X. Zhu, Q. Zhang, Y. Li, and H. Wang, Facile crystallization control of LaF3/LaPO4:Ce, Tb nanocrystals in a microfluidic reactor using microwave irradiation, J. Mater. Chem., 20, 1766-1771 (2010). https://doi.org/10.1039/b922873j
  23. D. Che, X. Zhu, P. Liu, Y. Duan, H. Wang, Q. Zhang, and Y. Li, A facile aqueous strategy for the synthesis of high-brightness LaPO4:Eu nanocrystals via controlling the nucleation and growth process, J. Lumines., 153, 369-374 (2014). https://doi.org/10.1016/j.jlumin.2014.03.028
  24. A. M. Alabanza, M. Mohammed, and K. Aslan, Crystallization of l-alanine in the presence of additives on a circular PMMA platform designed for metal-assisted and microwave-accelerated evaporative crystallization, CrystEngComm, 14, 8424-8431 (2012). https://doi.org/10.1039/c2ce26363g
  25. M. J. Lee, M. R. Abdul Hamid, J. Lee, J. S. Kim, Y. M. Lee, and H.-K. Jeong, Ultrathin zeolitic-imidazolate framework ZIF-8 membranes on polymeric hollow fibers for propylene/propane separation, J. Membr. Sci., 559, 28-34 (2018). https://doi.org/10.1016/j.memsci.2018.04.041
  26. A. Dastbaz, J. Karimi-Sabet, and M. A. Moosavian, Intensification of hydrogen adsorption by novel Cu-BDC@rGO composite material synthesized in a microwave-assisted circular micro-channel, Chem. Eng. Process.: Process Intensif., 135, 245-257 (2019). https://doi.org/10.1016/j.cep.2018.11.004
  27. F. Li and R. Lakerveld, Influence of alternating electric fields on protein crystallization in microfluidic devices with patterned electrodes in a parallel-plate configuration, Cryst. Growth Des., 17, 3062-3070 (2017). https://doi.org/10.1021/acs.cgd.6b01846
  28. F. Li and R. Lakerveld, Electric-field-assisted protein crystallization in continuous flow, Cryst. Growth Des., 18, 2964-2971 (2018). https://doi.org/10.1021/acs.cgd.8b00095
  29. M. Singh, O. K. Sarid, and Y. Tsori, Electric field assisted protein crystallization in a microfluidic device, SSRN (2023).
  30. S. Sui, Y. Wang, C. Dimitrakopoulos and S. L. Perry, A graphene-based microfluidic platform for electrocrystallization and in situ X-ray diffraction, Crystals, 8, 76 (2018).
  31. M. Torabinia, U. S. Dakarapu, P. Asgari, J. Jeon, and H. Moon, Electrowetting-on-dielectric (EWOD) digital microfluidic device for in-line workup in organic reactions: A critical step in the drug discovery work cycle, Sens. Actuators B: Chem., 330, 129252 (2021).