DOI QR코드

DOI QR Code

Noninvasive Depthwise Temperature Measurement in Skin Tissue Using Laser Speckle Imaging Technique

레이저 스펙클 이미징 기법을 이용한 피부 조직의 깊이 방향 비침습적 온도 측정

  • Jakir Hossain Imran (Department of Mechanical Engineering, Graduate School, Kookmin University) ;
  • Noemi Correa (School of Mechanical Engineering, Kookmin University) ;
  • Jung Kyung Kim (School of Mechanical Engineering, Kookmin University)
  • Received : 2024.06.21
  • Accepted : 2024.07.15
  • Published : 2024.07.31

Abstract

Accurate tissue temperature monitoring during clinical procedures, such as laser therapy or surgery, is crucial for ensuring patient safety and treatment efficacy. Noninvasive techniques are essential to prevent tissue disturbance while providing real-time temperature data. However, current methods often struggle to accurately measure temperature at various depths within the skin, which is essential to avoid damage to surrounding healthy tissues due to excessive heat. In response to this challenge, we developed a confocal imaging system that utilizes the laser speckle imaging (LSI) technique for precise depthwise temperature monitoring. LSI uses laser light scattering to capture subtle changes in speckle patterns on the skin's surface due to temperature fluctuations within the tissue. By analyzing these changes, LSI enables accurate depth-resolved temperature measurements. This technique enhances the precision and safety of medical procedures, offering significant potential for broader clinical applications, improved patient outcomes, and better thermal management during interventions.

Keywords

Acknowledgement

This work was supported by grants from the National Research Foundation (NRF) (NRF2022R1A4A5018891, RS-2023-00241885) funded by the Ministry of Science & ICT and the Korea Evaluation Institute of Industrial Technology (KEIT) (1415186305/20014904) funded by the Ministry of Trade, Industry & Energy, Republic of Korea.

References

  1. Kosir, J., Vella, D., and Jezersek, M., 2020, "Non-contact monitoring of the depth temperature profile for medical laser scanning technologies," Sci Rep, Vol. 10, pp.20242. 
  2. Cho, J., and Kim, J.K., 2010, "Visualization of temperature distribution deep inside the agar gel tissue phantom heated using moxibustion and 1064 nm infrared laser," J. Kor. Soc. Vis., Vol 8(4), pp.54~59.  https://doi.org/10.5407/JKSV.2010.8.4.054
  3. Schena, E., Tosi, D., Saccomandi, P., Lewis, E., and Kim, T., 2016, "Fiber Optic sensors for temperature monitoring during thermal treatments: an overview," Sensors, Vol. 16(7), pp.1144. 
  4. Zaltieri, M., Massaroni, C., Cauti, F.M., and Schena, E., 2021, "Techniques for temperature monitoring of myocardial tissue undergoing radiofrequency ablation treatments: an overview," Sensors, Vol. 21, pp.1453. 
  5. Song, D.J., and Lee, H., 2019, "Study on the temperature field measurement of fluid using phophor particle (Sr,Mg)2SiO4:Eu2+," J. Kor. Soc. Vis., Vol. 17(3), pp.59~65. 
  6. Goodman, J.W., 1975, "Statistical properties of laser speckle patterns," Springer, pp.9~75. 
  7. Trivedi, V., Mahajan, S., Chaniwal, V., Zalevsky, Z., Javidi, B., and Anand, A., 2014, "Optical temperature sensor using speckle field," Sensors and Actuators A: Physical, Vol. 216, pp.312~317.  https://doi.org/10.1016/j.sna.2014.06.006
  8. Burkel, D., Zaidi, S.H., Lang, M.K., Goddard, L.L., and Palmer, A.E., 1994, "Speckle techniques for noncontact temperature measurement," Mater. Res. Soc. Symp. Proc., Vol. 342, pp.17~22. 
  9. Regan, C., and Bernard, C., 2016, "Laser speckle imaging based on photothermally driven convection," J Biomed Opt., Vol. 21, pp.026011. 
  10. Bonisch, M., Panigrahi, A., Stoica, M., Calin, M., Ahrens, E., Zehetbauer, M., Skrotzki, W., and Eckert, J., 2017, "Giant thermal expansion and α-precipitation pathways in Ti-alloys," Nat Commun., Vol. 8(1), pp.1429. 
  11. Guo, S., Wei, S., Lee, S., Sheu, M., Kang, S., and Kang, J.U., 2019, "Intraoperative speckle variance optical coherence tomography for tissue temperature monitoring during cutaneous laser therapy," IEEE J Transl Eng Health Med., Vol. 7, pp.1800608. 
  12. Dias, M.R.B., Dornelas, D., Dias, C.P., de Almeida, Carvalho, S.A., Huguenin, J.A.O., and da Silva, L., 2019, "Effect of temperature on digital images of speckle patterns generated by a metallic rough surface," Opt Laser Technol., Vol. 113, pp.27~34.  https://doi.org/10.1016/j.optlastec.2018.12.002
  13. Hofling, R., & Osten, W., 1987, "Speckle pattern correlation by digital image processing," Measurement, Vol. 5, pp.30~33.  https://doi.org/10.1016/0263-2241(87)90025-X
  14. Kim, S., Cho, J., Choi, J., Lee, D.H., and Kim, J.K., 2013, "Characterization of porcine tissue perforation using high-power near-infrared laser at 808 nm wavelength," Trans. KSME B, Vol. 37(9), pp.807~814.  https://doi.org/10.3795/KSME-B.2013.37.9.807
  15. Kim, S., Hossain, M.T., Lee, D.H., and Kim, J.K., 2015, "Analysis of opto-thermal interaction of porcine stomach tissue with 808-nm laser for endoscopic submucosal dissection," J. Innov. Opt. Health Sci., Vol. 8(6), pp.1550043. 
  16. Wilson, T., and Carlini, A.R., 1987, "Three-dimensional imaging in confocal imaging systems with finite sized detectors," Journal of Microscopy, Vol. 145(1), pp.5~10.  https://doi.org/10.1111/j.1365-2818.1988.tb04561.x
  17. Leger, D., Mathieu, E., and Perrin, J.C., 1975, "Optical surface roughness determination using speckle correlation technique," Appl. Opt., Vol. 14, pp.872~877.  https://doi.org/10.1364/AO.14.000872
  18. Gary, C., and Kristin, S., 2007, "Quantification of paper mass distributions within local picking areas," Nordic Pulp & Paper Research Journal, Vol. 22(4), pp.441~446.  https://doi.org/10.3183/npprj-2007-22-04-p441-446
  19. Zhang, D., Zhang, X., and Cheng, G., 1999, "Compression strain measurement by digital speckle correlation," Experimental Mechanics, Vol. 39, pp.62~65.  https://doi.org/10.1007/BF02329302