DOI QR코드

DOI QR Code

Plasma resistance of Bi-Al-Si-O and Bi-Al-Si-O-F glass coating film

Bi-Al-Si-O와 Bi-Al-Si-O-F 유리 코팅막의 플라즈마 저항성

  • Sung Hyun Woo (Engineering Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Jihun Jung (Engineering Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Jung Heon Lee (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Hyeong-Jun Kim (Engineering Materials Center, Korea Institute of Ceramic Engineering and Technology)
  • 우성현 (한국세라믹기술원 엔지니어링소재센터) ;
  • 정지훈 (한국세라믹기술원 엔지니어링소재센터) ;
  • 이정헌 (성균관대학교 신소재공학과) ;
  • 김형준 (한국세라믹기술원 엔지니어링소재센터)
  • Received : 2024.08.12
  • Accepted : 2024.08.19
  • Published : 2024.08.31

Abstract

In this study, the microstructure and plasma resistance characteristics of 35Bi2O3-15Al2O3-50SiO2 (BiAl SiO) and 35Bi2O3-7.5Al2O3-50SiO2-7.5AlF3 (BiAlSiOF) glass layers coated on sintered alumina substrates were investigated according to the sintering conditions. The coated layers were formed using the bar coating method and then sintered at a temperature in the range of 700~900℃, which corresponds to the temperature before and after the hemisphere forming temperature, after a debinding process. The plasma resistance of the two coated glasses was approximately 2~3 times higher than that of the quartz glass, and in particular, the BiAlSiOF glass film with F added showed higher plasma resistance than BiAlSiO. It is thought to be due to the effect of suppressing the reaction with fluorine gas by adding fluorine to the glass. When the sintering time was increased at 700℃ and 800℃, the plasma resistance of both glasses improved, but when the sintering temperature was increased to 900℃, the plasma resistance decreased again (i.e., the etching rate increased). This phenomenon is thought to be related to the crystallization behavior of both glasses. The change in plasma resistance depending on the sintering conditions is thought to be related to the appearance of Al and Bi-rich phases.

본 연구에서는 소결된 알루미나 기판에 코팅된 35Bi2O3-15Al2O3-50SiO2(BiAlSiO) 및 35Bi2O3-7.5Al2O3-50SiO2-7.5AlF3(BiAlSiOF) 유리층의 미세구조와 플라즈마 저항 특성이 소결 조건에 따라 어떻게 변화하는지를 조사하였다. 코팅된 층은 바 코팅(bar Coating) 방법을 사용하여 형성되었으며, 이후 탈지 공정을 거쳐 반구 형성 온도 전/후인 700~900℃ 범위의 온도에서 소결 되었다. 내플라즈마성은 석영유리보다 두개의 코팅 유리가 약 2~3배 더 높았으며, F를 첨가한 BiAlSiOF는 BiAlSiO보다 높은 내플라즈성을 나타냈다. 이는 불소 첨가 효과로 판단된다. 소결 온도가 700℃에서 800℃로 증가함에 따라 두 유리 모두 내플라즈마성이 향상되었으나, 900℃까지 소결 온도를 증가시키면 내플라즈마성은 다시 감소한다(즉, 식각률이 높아진다). 이러한 현상은 두 유리의 결정화 거동과 관련 깊은 것으로 판단된다. 소결 조건에 따른 내플라즈마성의 변화는 Al과 Bi-rich 상의 출현여부에 관련된 것으로 생각된다.

Keywords

Acknowledgement

이 논문은 한국연구재단(NRF, 과제번호 2020M3H4A3106001, 과제고유번호 1711127315, 과제명 "초미세 공정용 오염입자 저감 내플라즈마 코팅소재 개발")과 한국산업기술진흥원(KIAT, 과제번호 P0023759, 과제고유번호 1415189568, 과제명 "석영유리 대비 3배 이상 내 플라즈마성이 높은 저융점 무알칼리 비정질소재 개발")로부터 지원을 받아 연구되었습니다.

References

  1. D.M. Kim, M.R. Jang, Y.S. Oh, S. Kim, S.M. Lee and S.H. Lee, "Relative sputtering rates of oxides and fluorides of aluminum and yttrium", Surf. Coat. Technol. 309 (2017) 694.
  2. H. Shih, "A systematic study and characterization of advanced corrosion resistance materials and their applications for plasma etching processes in semiconductor silicon wafer fabrication", IntechOpen (2012).
  3. T. Moriya, T. Murakami, H. Nakayama, H. Nagaike, E. Sugawara, Y. Kobayashi, M. Shimada and K. Okuyama, "Reduction of particle contami-nation in an actual plasma etching process", ISSM 2005, IEEE Int. Symp. Semicond. Manuf. (2005) 229.
  4. N. Ito, T. Moriya, F. Uesugi, M. Matsumoto, S. Liu and Y. Kitayama, "Reduction of particle contami-nation in plasma etching equipment by dehydration of chamber wall", Jpn. J. Appl. Phys. 47 (2008) 3630.
  5. K.-B. Kim, D. Kim, J. Lee, Y.-S. Oh, H.-T. Kim, H. Kim and S.-M. Lee, "Erosion behavior of YAG ceramics under fluorine plasma and their XPS analysis", J. Korean Ceram. Soc. 46 (2009) 456.
  6. T.K. Lin, W.K. Wang, S.Y. Huang, C.T. Tasi and D.S. Wuu, "Comparison of erosion behavior and particle contamination in mass production CF4/O2 plasma chambers using Y2O3 and YF3 protective coatings", Nanomaterials 7 (2017) 183.
  7. J. Park, J.H. Choi, H. Na and H.J. Kim, "Effect of CaF2 on fluorocarbon plasma resistance and thermal properties of CaO-Al2O-SiO2 glasses", J. Asian Ceram. Soc. 9 (2021) 334.
  8. Y.S. Jung, K.W. Min, J.H. Choi, J.S. Yoon, W.B. Im and H.J. Kim, "Plasma resistant characteristics according to sintering conditions of CaO-Al2O3-SiO2 glass coating layer", J. Korean Ceram. Soc. 59 (2022) 86.
  9. K.W. Min, J.H. Choi, Y.S. Jung, W.B. Im and H.J. Kim, "CF4/O2/Ar plasma resistance of Al2O3 free multi components glasses", J. Semicond. Display Technol. 21 (2022) 57.
  10. J.H. Choi, W.B. Im and H.J. Kim, "Pl asma resistant glass (PRG) for reducing particulate contamination during plasma etching in semiconductor manufacturing: A review", Mater. Today Commun. 34 (2023) 105267.
  11. J.H. Choi, H.B. Park, H. Na and H.-J. Kim, "Plasma corrosion resistance of RO-Al2O3-SiO2 (R: Alkaline earth) under fluoro-carbon plasma with Ar+: II. Plasma resistant glass", Corros. Sci. 146 (2019) 247.
  12. J.H. Choi, J.S. Yoon, Y.S. Jung, K.W. Min, W.B. Im, and H.J. Kim, "Analysis of plasma etching resistance for commercial quartz glasses used in semiconductor apparatus in fluorocarbon plasma", Mater. Chem. Phys. 272 (2021) 125015.
  13. J.H. Choi, H. Na, J. Park and H.J. Kim, "Plasma corrosion resistance of aluminosilicate glasses containing Ca, Y and B under fluorocarbon plasma with Ar+", J. Non-Cryst. Solids 521 (2019) 119498.
  14. Y.M. Byun, J.H. Choi, W.B. Im and H.J. Kim, "Analysis of plasma etching reactivity of bismuth aluminosilicate glasses using fluorine concentration", J. Non-Cryst. Solids 629 (2024) 112883.
  15. U. Ali, H. Khan, M. Aamir, K. Giasin, N. Habib and M.O. Awan, "Analysis of microstructure and mechanical properties of bismuth-doped SAC305 lead-free solder alloy at high temperature", Metals 221 (2021) 1117.
  16. I. Rosales, G. Gonzalez-Rodriguez, J.L. Gama and R. Guardian, "Bismuth effect on the mechanical properties of antifriction Al-Sn alloys", Mater. Sci. Appl. 5 (2014) 8.
  17. G.E. Lloyd, "Atomic number and crystallographic contrast images with the SEM: a review of backscattered electron techniques", Mineral. Mag. 51 (1987) 3.
  18. S.H. Lan, C.T. Lee, Y.S. Lai, C.C. Chen and H.W. Yang, "The relationship between the structure and thermal properties of Bi2O3-ZnO-B2O3 glass system", Adv. Condens. Matter Phys. 2021 (2021) 2321558.
  19. T. Maeder, "Review of Bi2O3 based glasses for electronics and related applications", Int. Mater. Rev. 58 (2013) 3.
  20. C.Y. Wang, G.Q. Hu, Z.J. Zhang, B.Q. Liu, L.L. Zhu, H. Wang, H.H. Chen, K. Yang and J.T. Zhao, "Preparation and characterization of Bi2O3-SiO2-Al2O3 based glasses of good transparency with high Bi2O3 content", J. Non-Cryst. Solids 363 (2013) 84.
  21. F. Oudich, N. David, S. Mathieu and M. Vilasi, "Phase equilibria investigations and thermodynamic modeling of the system Bi2O3-Al2O3", J. Nucl. Mater. 457 (2015) 72.
  22. E.I. Speranskaya, V.M. Skorikov, E.Y. Rode, V.A. Terekhova and N.S. Kurnakov, "The phase diagram of the system bismuth oxide-ferric oxide", Bull. Acad. Sci. USSR, Div. Chem. Sci. 14 (1965) 873.