DOI QR코드

DOI QR Code

친환경고화재와 탄소섬유 보강토의 일축압축강도 특성

Unconfined Compressive Strength Characteristics of Eco-Friendly Stabilizers and Carbon Fiber Reinforced Soil

  • Sewook Oh (Department of Construction & Disaster Prevention Engineering, Kyungpook National University) ;
  • Sunghwan Yang (Department of Construction & Disaster Prevention and Environmental Engineering, Kyungpook National University) ;
  • Hongseok Kim (Department of Construction & Disaster Prevention Engineering, Kyungpook National University)
  • 투고 : 2024.07.04
  • 심사 : 2024.07.22
  • 발행 : 2024.08.01

초록

본 연구에서는 풍화토 비탈면에서 발생하는 세굴 및 표층 붕괴 면의 표층 보강을 목적으로 탄소섬유와 친환경고화재(E.S.B.)를 혼합하여 일축 압축강도 시험을 수행하였다. E.S.B.와 탄소섬유의 최적 배합비를 결정하기 위해 E.S.B.는 10%, 20%, 30%의 조건을 설정하였고, 탄소섬유는 0.3%, 0.6%, 0.9%, 1.2%로 설정하였다. 또한, 건조밀도 및 재령 기간에 따른 일축 압축강도 변화를 분석하기 위해 최대건조단위 중량의 85%, 95%를 적용하고 재령 기간 3일, 7일, 28일로 설정하였다. 비탈면 표층 보강을 위한 기준 강도는 ACI 230.1R-09(2009)에서 7일 기준 4MPa, 28일 기준 6MPa로 제안하고 있다. 압축시험 결과 E.S.B. 보강토의 일축 압축강도는 다짐도 95%인 경우 E.S.B. 혼합비율 10% 이상에서 기준 강도를 충족하는 것을 알 수 있다. 또한, 친환경고화재(E.S.B.) 보강토에 탄소섬유를 혼합한 결과 일축 압축강도에 의한 항복점 이후 탄소섬유를 혼합한 조건에서 연성 형태의 파괴 형상이 나타나 항복 이후 발생하는 전도에 대하여 보완할 수 있으며, 탄소섬유 0.6% 혼합비율에서 최대강도를 발현하는 것으로 분석되었다. 탄소섬유 보강토는 탄소섬유를 혼합하지 않은 조건과 비교하여 일축 압축강도가 약 54~70%의 강도증가율이 나타났다.

In this study, to reinforce the surface layer of weathered soil slopes where erosion and collapse of surface layer occur, compression strength tests were conducted by mixing carbon fiber and eco-friendly stabilizer (E.S.B.) To determine the optimal mixing ratio of E.S.B. and carbon fiber, E.S.B. was set at conditions of 10%, 20%, and 30%, and carbon fiber at 0.3%, 0.6%, 0.9%, and 1.2%. Additionally, to analyze the changes in compressive strength according to dry density and curing period, 85% and 95% of the maximum dry unit weight were applied, and curing periods were set to 3 days, 7 days, and 28 days. The standard strength for surface layer reinforcement of slopes is proposed as 4 MPa at 7 days and 6 MPa at 28 days according to ACI 230.1R-09 (2009). The compression test results showed that the unconfined compressive strength of E.S.B. reinforced soil met the standard strength at an E.S.B. mixing ratio of 10% or more for 95% compaction. Moreover, when carbon fiber was mixed with E.S.B. reinforced soil, a ductile fracture pattern was observed after the yield point due to compressive strength, indicating that the mixture could compensate for post-yield failure. It was analyzed that the maximum strength is exhibited at a carbon fiber mixing ratio of 0.6%. The unconfined compressive strength of carbon fiber reinforced soil increases by approximately 54-70% compared to the condition without carbon fiber.

키워드

참고문헌

  1. ACI 230.1R-09 (2009), "Report on Soil Cement", pp. 1~32.
  2. Bao, X., Huang, Y., Jin, Z., Xiao, X., Tang, W., Cui, H. and Chen, X. (2021), "Experimental investigation on mechanical properties of clay soil reinforced with carbon fiber", Journal of the Construction and Building Materials, Vol. 280, pp. 1~9.
  3. Chen, B. and Liu, J. (2008), "Damage in carbon fiber-reinforced concrete, monitored by both electrical resistance measurement and acoustic emission analysis", Journal of the Construction and Building Materials, Vol. 22, No. 11, pp. 2196~2201. https://doi.org/10.1016/j.conbuildmat.2007.08.004
  4. Consoli, N. C., Arcari Bassani, M. and Festugato, L. (2010), "Effect of fiber-reinforcement on the strength of cemented soils", Journal of the Geotextiles and Geomembranes, Vol. 28, No. 4, pp. 344~351. https://doi.org/10.1016/j.geotexmem.2010.01.005
  5. Dinesh, A., Jayashree, J., Abhishek, S. and Prakash, A. (2023), "Multifunctional properties of carbon fiber integrated cement composite - A review and insights", Journal of the Materials Today: Proceedings, Available online 3 June 2023, pp. 1~6.
  6. Han, B., Ding, S. and Yu, X. (2015), "Intrinsic self-sensing concrete and structures: A review", Journal of the measurement, Vol. 59, pp. 110~128. https://doi.org/10.1016/j.measurement.2014.09.048
  7. Kim, H. S. (2020), "Evaluation of the use of environmentally friendly cementitous mixed soil as substitute materials for road subbase", Ph. D. dissertation, Kyungpook National University, pp. 42~63 (In Korean).
  8. Kim, W. H. (2018), "A Study on the Effect of Slope Stabilization Method using Soil Stabilizer and Soil-Nailing", Master dissertation, Daejin University, pp. 14~22 (In Korean).
  9. Lee, K. I., Park, S. B. and Choi, M. J. (2021), "Evaluation of field applicability of slope of improved soil for ground sabilizer", Journal of Korean Geosynthetics Society, Vol. 20, No. 1, pp. 35~44 (In Korean).
  10. Park, M, J. (2019), "Stability Evaluation of Surface Layer of Improved Soil Slope Using Fly Ash", Master dissertation, Daejin University, pp. 6~26 (In Korean).
  11. Sanchez, F. and Sobolev, K. (2010), "Nanotechnology in concrete - A review", Journal of the Construction and Building Materials, Vol. 24, No. 11, pp. 2060~2071. https://doi.org/10.1016/j.conbuildmat.2010.03.014
  12. Tang, C., Shi, B., Chen, F. and Cai, Y. (2007), "Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil", Journal of the Geotextiles and Geomembranes, Vol. 25, No. 3, pp. 194~202. https://doi.org/10.1016/j.geotexmem.2006.11.002
  13. Wang, L. and Shao, G. (2023), "Test research on flexural strength of soil-cement reinforced with carbon fibers", Journal of the Case Studies in Construction Materials, Vol. 19, pp. 1~18.