DOI QR코드

DOI QR Code

A Ridge-type Silicon Waveguide Optical Modulator Based on Graphene and Black Phosphorus Heterojunction

  • Zhenglei Zhou (College of Mathematics and Physics, Chengdu University of Technology) ;
  • Jianhua Li (College of Mathematics and Physics, Chengdu University of Technology) ;
  • Desheng Yin (College of Mathematics and Physics, Chengdu University of Technology) ;
  • Xing Chen (School of Electronic Engineering, Chengdu Technological University)
  • 투고 : 2024.02.05
  • 심사 : 2024.06.09
  • 발행 : 2024.08.25

초록

In this paper, an optical modulator based on monolayer graphene and triple-layer black phosphorus (BP) heterojunction in the optical communication band range is designed. The influences of geometric parameters, chemical potential, BP orientation and dispersion on the fundamental mode of this modulator were determined in detail by the finite-difference time-domain (FDTD) method. Using appropriate geometric parameter settings, the extinction ratio of this proposed modulator is 0.166 dB, while the modulator with a working length of 3 ㎛ can realize a 0.498 dB modulation depth. The 3-dB bandwidth of this modulator could achieve up to 2.65 GHz with 27.23 fJ/bit energy consumption. The extinction ratio and bandwidth of the proposed modulator increased by 66% and 120.83%, respectively, compared to the monolayer graphene-based ridge-type waveguide modulator. Energy consumption was reduced by 97.28%, compared to a double-layer graphene-based modulator.

키워드

과제정보

Natural Science Foundation of Sichuan Province (Grant no. 2022NSFSC1800).

참고문헌

  1. K. S. Novoselov, A. K. Geim, S. V. Morozo, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science 306, 666-669 (2004). https://doi.org/10.1126/science.1102896
  2. M. Liu, X. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, "A graphene-based broadband optical modulator," Nature 47, 64-67 (2011).
  3. M. Liu, X. B. Yin, and X. Zhang, "Double-layer graphene optical modulator," Nano Lett. 12, 1482-1485 (2012). https://doi.org/10.1021/nl204202k
  4. J. Qiao, X. Kong, Z.-X. Hu, F. Yang, and W. Ji W, "High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus," Nat. Commun. 5, 4475 (2014).
  5. J. Ma, G. Xie, P. Lv, W. Gao, P. Yuan, L. Qian, U. Griebner, V. Petrov, H. Yu, H. Zhang, and J. Wang, "Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers," Sci. Rep. 4, 5016 (2014).
  6. T. Mueller, F. Xia, and P. Avouris, "Graphene photodetectors for high-speed optical communications," Nat. Photonics 4, 297-301 (2010). https://doi.org/10.1038/nphoton.2010.40
  7. L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, "Graphene field-effect transistors as room-temperature terahertz detectors," Nat. Mater. 11, 865-871 (2012). https://doi.org/10.1038/nmat3417
  8. D. Burman, R. Ghosh, S. Santra, and P. K. Guha, "Highly proton conducting MoS2/graphene oxide nanocomposite based chemoresistive humidity sensor," RSC Adv. 6, 57424-57433 (2016). https://doi.org/10.1039/C6RA11961A
  9. R. Arsat, M. Breedon, M. Shafiei, P. G. Spizziri, S. Gilje, R. B. Kaner, K. Kalantar-Zadeh, and W. Wlodarski, "Graphenelike nano-sheets for surface acoustic wave gas sensor applications," Chem. Phys. Lett. 467, 344-347 (2009). https://doi.org/10.1016/j.cplett.2008.11.039
  10. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, "Ultrahigh electron mobility in suspended graphene," Solid State Commun. 146, 351-355 (2008). https://doi.org/10.1016/j.ssc.2008.02.024
  11. X. Yang, G. Liu, M. Rostami, A. A. Balandin, and K. Mohanram, "Graphene ambipolar multiplier phase detector," IEEE Electron Device Lett. 32, 1328-1330 (2011). https://doi.org/10.1109/LED.2011.2162576
  12. V. Ryzhii, T. Otsuji, M. Ryzhii, V. G. Leiman, S. O. Yurchenko, V. Mitin, and M. S. Shur, "Effect of plasma resonances on dynamic characteristics of double graphene-layer optical modulator," J. Appl. Phys. 112, 104507 (2012).
  13. X. Chen, Y. Wang, Y. Xiang, G. Jiang, L. Wang, Q. Bao, H. Zhang, Y. Liu, S. Wen, and D. Fan, "A broadband optical modulator based on a graphene hybrid plasmonic waveguide," J. Light. Technol. 34, 4948-4953 (2016). https://doi.org/10.1109/JLT.2016.2612400
  14. H. Dalir, Y. Xia, Y. Wang, and X. Zhang, "A thermal broadband graphene optical modulator with 35 GHz speed," ACS Photonics 3, 1564-1568 (2016).
  15. E. S. Reich, "Phosphorene excites materials scientists," Nature 506, 19 (2014).
  16. R. Cheng, D. Li, H. Zhou, C. Wang, A. Yin, S. Jiang, Y. Liu, Y. Chen, Y. Huang, and X. Duan, "Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes," Nano. Lett. 14, 5590-5597 (2014). https://doi.org/10.1021/nl502075n
  17. J. Ma, G. Q. Xie, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H, J. Zhang, J. Y. Wang, and D. Y. Tang, "Graphene modelocked femtosecond laser at 2 µm wavelength," Opt. Lett. 37, 2085-2087 (2012). https://doi.org/10.1364/OL.37.002085
  18. A. S. Rodin, A. Carvalho, and A. H. Castro, "Strain-induced gap modification in black phosphorus," Phys. Rev. Lett. 112, 176801 (2014).
  19. T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. C. Neto, "Tunable optical properties of multilayer black phosphorus thin films," Phys. Rev. B 90, 075434 (2014).
  20. S. Appalakondaiah, G. Vaitheeswaran, S. Lebegue, N. E. Christensen, and A. Svane, "Effect of van der Waals interactions on the structural and elastic properties of black phosphorus," Phys. Rev. B 86, 035105 (2012).
  21. L. Li, J. Kim, C. Jin, G. J. Ye, D. Y. Qiu, F. H. da Jornada, Z. Shi, L. Chen, Z. Zhang, F. Yang, K. Watanabe, T. Taniguchi, W. Ren, S. G. Louie, X. H. Chen, Y. Zhang, and F. Wang, "Direct observation of the layer-dependent electronic structure in phosphorene," Nat. Nanotechnol. 12, 21-25 (2017). https://doi.org/10.1038/nnano.2016.171
  22. V. Tran, R. Soklaski, Y. Liang, and L. Yang, "Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus," Phys. Rev. B 89, 235319 (2014).
  23. B. Deng, V. Tran, Y. Xie, H. Jiang, C. Li, Q. Guo, X. Wang, H. Tian, S. J. Koester, H. Wang, J. J. Cha, Q. Xia, L. Yang, and F. Xia, "Efficient electrical control of thin-film black phosphorus bandgap," Nat. Commun. 8, 14474 (2017).
  24. Y. Liu, Z. Qiu, A. Carvalho, Y. Bao, H. Xu, S. J. R. Tan, W. Liu, A. H. Neto, K. P. Loh, and J. Lu, "Gate-tunable giant stark Effect in few-layer black phosphorus," Nano Lett. 17, 1970-1977 (2017). https://doi.org/10.1021/acs.nanolett.6b05381
  25. H. Wang, X. Zhang, and Y. Xie, "Photocatalysis in two-dimensional black phosphorus: The roles of many-body effects," ACS Nano 12, 9648-9653 (2018). https://doi.org/10.1021/acsnano.8b06723
  26. M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, "Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors," Nano Lett. 14, 3347-3352 (2014). https://doi.org/10.1021/nl5008085
  27. R. Peng, K. Khaliji, N. Youngblood, R. Grassi, T. Low, and M. Li, "Midinfrared electro-optic modulation in few-layer black phosphorus," Nano Lett. 17, 6315-6320 (2017). https://doi.org/10.1021/acs.nanolett.7b03050
  28. C. Liu, Z. Sun, L. Zhang, J. Lv, X. F. Yu, L. Zhang, and X. Chen, "Black phosphorus integrated tilted fiber grating for ultrasensitive heavy metal sensing," Sensor. Actuators B: Chem. 257, 1093-1098 (2018). https://doi.org/10.1016/j.snb.2017.11.022
  29. R. Verma, B. D. Gupta, and R. Jha, "Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers," Sensor. Actuator B: Chem. 160, 623-631 (2011). https://doi.org/10.1016/j.snb.2011.08.039
  30. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," Rev. Modern. Phys. 81, 109-162 (2009). https://doi.org/10.1103/RevModPhys.81.109
  31. A. N. Grigorenko, M. Polini, and K. S. Novoselov, "Graphene plasmonics," Nat. Photonics 6, 749-758 (2012). https://doi.org/10.1038/nphoton.2012.262
  32. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, "Gate-variable optical transitions in graphene," Science 320, 206-209 (2008). https://doi.org/10.1126/science.1152793
  33. G. Kovacevic and S. Yamashita, "Design optimizations for a high-speed two-layer graphene optical modulator on silicon," IEICE Electron. Express 13, 20160499 (2016).
  34. L. Li, Y. Yu, G. J. Ye, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, "Black phosphorus field-effect transistors," Nat. Nanotech. 9, 372-377 (2014). https://doi.org/10.1038/nnano.2014.35
  35. H. Shu, Y. Li, X. Niu, and J. Wang, "The stacking dependent electronic structure and optical properties of bilayer black phosphorus," Phys. Chem. Chem. Phys. 18, 6085-6091 (2016). https://doi.org/10.1039/C5CP07995K
  36. H. Karimkhani and H. Vahed, "An optical modulator with ridge-type silicon waveguide based on graphene and MoS2 layers and improved modulation depth," Opt. Quantum Electron. 53, 211 (2021).