Acknowledgement
Natural Science Foundation of Sichuan Province (Grant no. 2022NSFSC1800).
References
- K. S. Novoselov, A. K. Geim, S. V. Morozo, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science 306, 666-669 (2004). https://doi.org/10.1126/science.1102896
- M. Liu, X. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, "A graphene-based broadband optical modulator," Nature 47, 64-67 (2011).
- M. Liu, X. B. Yin, and X. Zhang, "Double-layer graphene optical modulator," Nano Lett. 12, 1482-1485 (2012). https://doi.org/10.1021/nl204202k
- J. Qiao, X. Kong, Z.-X. Hu, F. Yang, and W. Ji W, "High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus," Nat. Commun. 5, 4475 (2014).
- J. Ma, G. Xie, P. Lv, W. Gao, P. Yuan, L. Qian, U. Griebner, V. Petrov, H. Yu, H. Zhang, and J. Wang, "Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers," Sci. Rep. 4, 5016 (2014).
- T. Mueller, F. Xia, and P. Avouris, "Graphene photodetectors for high-speed optical communications," Nat. Photonics 4, 297-301 (2010). https://doi.org/10.1038/nphoton.2010.40
- L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, "Graphene field-effect transistors as room-temperature terahertz detectors," Nat. Mater. 11, 865-871 (2012). https://doi.org/10.1038/nmat3417
- D. Burman, R. Ghosh, S. Santra, and P. K. Guha, "Highly proton conducting MoS2/graphene oxide nanocomposite based chemoresistive humidity sensor," RSC Adv. 6, 57424-57433 (2016). https://doi.org/10.1039/C6RA11961A
- R. Arsat, M. Breedon, M. Shafiei, P. G. Spizziri, S. Gilje, R. B. Kaner, K. Kalantar-Zadeh, and W. Wlodarski, "Graphenelike nano-sheets for surface acoustic wave gas sensor applications," Chem. Phys. Lett. 467, 344-347 (2009). https://doi.org/10.1016/j.cplett.2008.11.039
- K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, "Ultrahigh electron mobility in suspended graphene," Solid State Commun. 146, 351-355 (2008). https://doi.org/10.1016/j.ssc.2008.02.024
- X. Yang, G. Liu, M. Rostami, A. A. Balandin, and K. Mohanram, "Graphene ambipolar multiplier phase detector," IEEE Electron Device Lett. 32, 1328-1330 (2011). https://doi.org/10.1109/LED.2011.2162576
- V. Ryzhii, T. Otsuji, M. Ryzhii, V. G. Leiman, S. O. Yurchenko, V. Mitin, and M. S. Shur, "Effect of plasma resonances on dynamic characteristics of double graphene-layer optical modulator," J. Appl. Phys. 112, 104507 (2012).
- X. Chen, Y. Wang, Y. Xiang, G. Jiang, L. Wang, Q. Bao, H. Zhang, Y. Liu, S. Wen, and D. Fan, "A broadband optical modulator based on a graphene hybrid plasmonic waveguide," J. Light. Technol. 34, 4948-4953 (2016). https://doi.org/10.1109/JLT.2016.2612400
- H. Dalir, Y. Xia, Y. Wang, and X. Zhang, "A thermal broadband graphene optical modulator with 35 GHz speed," ACS Photonics 3, 1564-1568 (2016).
- E. S. Reich, "Phosphorene excites materials scientists," Nature 506, 19 (2014).
- R. Cheng, D. Li, H. Zhou, C. Wang, A. Yin, S. Jiang, Y. Liu, Y. Chen, Y. Huang, and X. Duan, "Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes," Nano. Lett. 14, 5590-5597 (2014). https://doi.org/10.1021/nl502075n
- J. Ma, G. Q. Xie, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H, J. Zhang, J. Y. Wang, and D. Y. Tang, "Graphene modelocked femtosecond laser at 2 µm wavelength," Opt. Lett. 37, 2085-2087 (2012). https://doi.org/10.1364/OL.37.002085
- A. S. Rodin, A. Carvalho, and A. H. Castro, "Strain-induced gap modification in black phosphorus," Phys. Rev. Lett. 112, 176801 (2014).
- T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. C. Neto, "Tunable optical properties of multilayer black phosphorus thin films," Phys. Rev. B 90, 075434 (2014).
- S. Appalakondaiah, G. Vaitheeswaran, S. Lebegue, N. E. Christensen, and A. Svane, "Effect of van der Waals interactions on the structural and elastic properties of black phosphorus," Phys. Rev. B 86, 035105 (2012).
- L. Li, J. Kim, C. Jin, G. J. Ye, D. Y. Qiu, F. H. da Jornada, Z. Shi, L. Chen, Z. Zhang, F. Yang, K. Watanabe, T. Taniguchi, W. Ren, S. G. Louie, X. H. Chen, Y. Zhang, and F. Wang, "Direct observation of the layer-dependent electronic structure in phosphorene," Nat. Nanotechnol. 12, 21-25 (2017). https://doi.org/10.1038/nnano.2016.171
- V. Tran, R. Soklaski, Y. Liang, and L. Yang, "Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus," Phys. Rev. B 89, 235319 (2014).
- B. Deng, V. Tran, Y. Xie, H. Jiang, C. Li, Q. Guo, X. Wang, H. Tian, S. J. Koester, H. Wang, J. J. Cha, Q. Xia, L. Yang, and F. Xia, "Efficient electrical control of thin-film black phosphorus bandgap," Nat. Commun. 8, 14474 (2017).
- Y. Liu, Z. Qiu, A. Carvalho, Y. Bao, H. Xu, S. J. R. Tan, W. Liu, A. H. Neto, K. P. Loh, and J. Lu, "Gate-tunable giant stark Effect in few-layer black phosphorus," Nano Lett. 17, 1970-1977 (2017). https://doi.org/10.1021/acs.nanolett.6b05381
- H. Wang, X. Zhang, and Y. Xie, "Photocatalysis in two-dimensional black phosphorus: The roles of many-body effects," ACS Nano 12, 9648-9653 (2018). https://doi.org/10.1021/acsnano.8b06723
- M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, "Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors," Nano Lett. 14, 3347-3352 (2014). https://doi.org/10.1021/nl5008085
- R. Peng, K. Khaliji, N. Youngblood, R. Grassi, T. Low, and M. Li, "Midinfrared electro-optic modulation in few-layer black phosphorus," Nano Lett. 17, 6315-6320 (2017). https://doi.org/10.1021/acs.nanolett.7b03050
- C. Liu, Z. Sun, L. Zhang, J. Lv, X. F. Yu, L. Zhang, and X. Chen, "Black phosphorus integrated tilted fiber grating for ultrasensitive heavy metal sensing," Sensor. Actuators B: Chem. 257, 1093-1098 (2018). https://doi.org/10.1016/j.snb.2017.11.022
- R. Verma, B. D. Gupta, and R. Jha, "Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers," Sensor. Actuator B: Chem. 160, 623-631 (2011). https://doi.org/10.1016/j.snb.2011.08.039
- A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," Rev. Modern. Phys. 81, 109-162 (2009). https://doi.org/10.1103/RevModPhys.81.109
- A. N. Grigorenko, M. Polini, and K. S. Novoselov, "Graphene plasmonics," Nat. Photonics 6, 749-758 (2012). https://doi.org/10.1038/nphoton.2012.262
- F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, "Gate-variable optical transitions in graphene," Science 320, 206-209 (2008). https://doi.org/10.1126/science.1152793
- G. Kovacevic and S. Yamashita, "Design optimizations for a high-speed two-layer graphene optical modulator on silicon," IEICE Electron. Express 13, 20160499 (2016).
- L. Li, Y. Yu, G. J. Ye, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, "Black phosphorus field-effect transistors," Nat. Nanotech. 9, 372-377 (2014). https://doi.org/10.1038/nnano.2014.35
- H. Shu, Y. Li, X. Niu, and J. Wang, "The stacking dependent electronic structure and optical properties of bilayer black phosphorus," Phys. Chem. Chem. Phys. 18, 6085-6091 (2016). https://doi.org/10.1039/C5CP07995K
- H. Karimkhani and H. Vahed, "An optical modulator with ridge-type silicon waveguide based on graphene and MoS2 layers and improved modulation depth," Opt. Quantum Electron. 53, 211 (2021).