DOI QR코드

DOI QR Code

Thiran filter-based fractional delay compensation for grid-tied converters

  • Sunwoo Rhee (Department of Electrical Engineering, Konkuk University) ;
  • Sungmin Lee (Department of Electrical Engineering, Konkuk University) ;
  • Kwonhoon Kim (Department of Electrical Engineering, Konkuk University) ;
  • Younghoon Cho (Department of Electrical Engineering, Konkuk University)
  • Received : 2024.03.25
  • Accepted : 2024.04.24
  • Published : 2024.07.20

Abstract

This paper proposes fractional delay filter-based repetitive controllers (FDF-RCs) for grid-tied converters. Finite impulse response filters and infinite impulse response filters are used to estimate the fractional-order delay filter in a conventional repetitive controller. To do this, both the Lagrange filter-based repetitive controller (LF-RC) and Thiran filter-based repetitive controller (TF-RC) are utilized as FDF-RCs to compensate a fractional delay. The operating principle, the ladder structure, and the performance analysis of FDF-RCs are addressed. The simulation and the experimental results on a single-phase grid-tied converter verify the harmonic suppression ability and reference-tracking performance of the proposed FDF-RC under the grid frequency variation. Moreover, the advantages of the TF-RC over the LF-RC are discussed by comparing and analyzing the simulation and experimental results.

Keywords

Acknowledgement

This work was partly supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (20212020800020, Development of High Efficiency Power Converter based on Multidisciplinary Design and Optimization Platform) and Korea Institute of Energy Technology Evaluation and Planning(KETEP) grant funded by the Korea government(MOTIE) (No. 20210501010020, Development on MMC-based ESS and Core Devices of High Voltage Hub-station Grid-Connected with Renewable Energy Source)

References

  1. Jiang, W., Ding, X., Ni, Y., Wang, J., Wang, L., Ma, W.: An improved deadbeat control for a three-phase three-line active power filter with current-tracking error compensation. IEEE Trans. Power Electron. 33(3), 2061-2072 (2018) https://doi.org/10.1109/TPEL.2017.2693325
  2. Gonzalez-Espin, F., Garcera, G., Patrao, I., Figueres, E.: An adaptive control system for three-phase photovoltaic inverters working in a polluted and variable frequency electric grid. IEEE Trans. Power Electron. 27(10), 4248-4261 (2012) https://doi.org/10.1109/TPEL.2012.2191623
  3. Singh, B., Singh, B.N., Chandra, A., Al-Haddad, K., Pandey, A., Kothari, D.P.: A review of three-phase improved power quality AC-DC converters. IEEE Trans. Ind. Electron. 51(3), 641-660 (2004) https://doi.org/10.1109/TIE.2004.825341
  4. Yang, S., Lei, Q., Peng, F.Z., Qian, Z.: A robust control scheme for grid-connected voltage-source inverters. IEEE Trans. Ind. Electron. 58(1), 202-212 (2011) https://doi.org/10.1109/TIE.2010.2045998
  5. Dannehl, J., Wessels, C., Fuchs, F.W.: Limitations of voltage-oriented PI current control of grid-connected PWM rectifiers with LCL filters. IEEE Trans. Ind. Electron. 56(2), 380-388 (2009) https://doi.org/10.1109/TIE.2008.2008774
  6. Kuperman, A.: Proportional-resonant current controllers design based on desired transient performance. IEEE Trans. Power Electron. 30(10), 5341-5345 (2015) https://doi.org/10.1109/TPEL.2015.2408053
  7. Herman, L., Papic, I., Blazic, B.: A proportional-resonant current controller for selective harmonic compensation in a hybrid active power filter. IEEE Trans. Power Del. 29(5), 2055-2065 (2014) https://doi.org/10.1109/TPWRD.2014.2344770
  8. Tzou, Y.Y., Ou, R.S., Jung, S.L., Chang, M.Y.: High-performance programmable AC power source with low harmonic distortion using DSP based repetitive control technique. IEEE Trans. Power Electron. 12, 715-725 (1997)
  9. Kurniawan, E., Cao, Z., Man, Z.: Design of robust repetitive control with time-varying sampling periods. IEEE Trans. Ind. Electron. 61(6), 2834-2841 (2014) https://doi.org/10.1109/TIE.2013.2276033
  10. Escobar, G., Catzin-Contreras, G.A., Lopez-Sanchez, M.J.: Compensation of variable fractional delays in the 6k ± 1 repetitive controller. IEEE Trans. Ind. Electron. 62(10), 6448-6456 (2015) https://doi.org/10.1109/TIE.2015.2424202
  11. Laakso, T.I., Valimaki, V., Karjalainen, M., Laine, U.K.: Splitting the unit delay [FIR/all pass filters design]. IEEE Signal Process. Mag. 13(1), 30-60 (1996) https://doi.org/10.1109/79.482137
  12. Thiran, J.-P.: Recursive digital filters with maximally fat group delay. IEEE Trans. Circuits Theory 18(6), 659-664 (1971) https://doi.org/10.1109/TCT.1971.1083363
  13. Koshita, S., Abe, M., Kawamata, M.: A simple ladder realization of maximally fat allpass fractional delay filters. IEEE Trans. Circuits Syst. II Exp. Briefs 61(3), 203-207 (2014)
  14. Chen, S., Zhao, Q., Ye, Y., Qu, B.: Using IIR filter in fractional order phase lead compensation PIMR-RC for grid-tied inverters. IEEE Trans. Ind. Electron. 70(9), 9399-9409 (2023) https://doi.org/10.1109/TIE.2022.3212433
  15. Q. Zhao, S. Chen, X. Lu, S. Chen, Fractional repetitive control based on IIR filter for grid-connected inverters. In: Proc. Int. Conf. Adv. Mech. Syst. (ICAMechS), pp. 175-180 (2019)
  16. Schechter, N., Kuperman, A.: Zero-sequence manipulation to maintain correct operation of NPC-PFC rectifier upon neutral line disconnection and reconnection. IEEE Trans. Ind. Electron. 64(1), 866-872 (2017) https://doi.org/10.1109/TIE.2016.2592458
  17. Zhao, Q., Chen, S., Wen, S., Qu, B., Ye, Y.: A frequency adaptive PIMR-type repetitive control for a grid-tied inverter. IEEE Access 6, 65418-65428 (2018) https://doi.org/10.1109/ACCESS.2018.2878416
  18. Baek, S., Cho, Y., Lai, J.-S.: Average periodic delay-based frequency adaptable repetitive control with a fixed sampling rate and memory of single-phase PFC converters. IEEE Trans. Power Electron. 36(6), 6572-6585 (2021) https://doi.org/10.1109/TPEL.2020.3035527
  19. Van de Sype, D.M., De Gusseme, K., De Belie, F.M.L.L., Van den Bossche, A.P., Melkebeek, J.A.: Small-signal z-domain analysis of digitally controlled converters. IEEE Trans. Power Electron. 21(2), 470-478 (2006) https://doi.org/10.1109/TPEL.2005.869758
  20. Tang, M., Gaeta, A., Formentini, A., Zanchetta, P.: A fractional delay variable frequency repetitive control for torque ripple reduction in PMSMs. IEEE Trans. Ind. Appl. 53(6), 5553-5562 (2017) https://doi.org/10.1109/TIA.2017.2725824