• Title/Summary/Keyword: Grid-tied converter

Search Result 21, Processing Time 0.028 seconds

Grid-tied Power Converter for Battery Energy Storage Composed of 2-stage DC-DC Converter

  • Kim, Do-Hyun;Lee, Yoon-Seok;Han, Byung-Moon;Kim, Ju-Yong;Chae, Woo-Kyu
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1400-1408
    • /
    • 2013
  • This paper proposes a new grid-tied power converter for battery energy storage, which is composed of a 2-stage DC-DC converter and a PWM inverter. The 2-stage DC-DC converter is composed of an LLC resonant converter connected in cascade with a 2-quadrant hybrid-switching chopper. The LLC resonant converter operates in constant duty ratio, while the 2-quadrant hybrid-switching chopper operates in variable duty ratio for voltage regulation. The operation of proposed system was verified through computer simulations. Based on computer simulations, a hardware prototype was built and tested to confirm the technical feasibility of proposed system. The proposed system could have relatively higher efficiency and smaller size than the existing system.

Real-Time Hardware Simulator for Grid-Tied PMSG Wind Power System

  • Choy, Young-Do;Han, Byung-Moon;Lee, Jun-Young;Jang, Gil-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.375-383
    • /
    • 2011
  • This paper describes a real-time hardware simulator for a grid-tied Permanent Magnet Synchronous Generator (PMSG) wind power system, which consists of an anemometer, a data logger, a motor-generator set with vector drive, and a back-to-back power converter with a digital signal processor (DSP) controller. The anemometer measures real wind speed, and the data is sent to the data logger to calculate the turbine torque. The calculated torque is sent to the vector drive for the induction motor after it is scaled down to the rated simulator power. The motor generates the mechanical power for the PMSG, and the generated electrical power is connected to the grid through a back-to-back converter. The generator-side converter in a back-to-back converter operates in current control mode to track the maximum power point at the given wind speed. The grid-side converter operates to control the direct current link voltage and to correct the power factor. The developed simulator can be used to analyze various mechanical and electrical characteristics of a grid-tied PMSG wind power system. It can also be utilized to educate students or engineers on the operation of grid-tied PMSG wind power system.

Analysis and Control of Neutral Point Current Deviation in Grid Tied 3-Level NPC Converter under Various Grid Unbalanced Conditions (다양한 불평형 계통 상황에서 계통 연계형 3-레벨 NPC 컨버터의 중성점 전류 변동에 대한 해석 및 제어)

  • Choi, Jaehoon;Suh, Yongsug
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.5
    • /
    • pp.385-393
    • /
    • 2020
  • This study introduces an analysis and control method for the variation of neutral point current in a grid-tied three-level neutral point clamped (NPC) converter under various grid imbalance operating conditions. Various fault cases with unbalanced amplitude and phase are systematically categorized and described using a unified metric called the imbalance factor. The fundamental component of neutral point current is generated under grid imbalance cases. The pattern and behavior of this fundamental component of neutral point current highly depend on the imbalance factor regardless of the particular type of grid fault cases. The control scheme for regulating the negative sequential component of AC input current effectively reduces the size of the fundamental component of neutral point current under a wide range of grid imbalance cases. The control scheme will enable a grid-tied three-level NPC converter to operate reliably and stably under various types of grid faults.

Hardware Simulator for LVRT Operation Analysis of Grid-Tied PMSG Wind Power System (계통연계형 PMSG 풍력발전시스템의 LVRT 동작 분석을 위한 하드웨어 시뮬레이터)

  • Lee, Jae-Wook;Kim, Jae-Hyuk;Choi, Young-Do;Han, Byung-Moon;Yoon, Young-Doo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1219-1226
    • /
    • 2014
  • This paper introduces a hardware simulator for the LVRT operation analysis of the grid-tied PMSG wind power system with a power dissipation circuit. The power dissipation circuit, which is composed of chopper and resistor, suppresses the sudden increase of DC-link voltage in the back-to-back converter of the grid-tied PMSG wind power system. The LVRT operation was first analyzed using computer simulations with PSCAD/EMTDC. A wind power simulator including the power dissipation circuit and the fault simulator composed of variac and IGBT were built to analyze the LVRT operation. Various experiments were conducted to verify the effectiveness of the power dissipation circuit for the LVRT operation. The developed hardware simulator can be extensively utilized for the analysis of various LVRT operations of the grid-tied wind power system.

Improvement Control of Power Quality of Grid-Tied PCS for Fuel Cell System (연료전지용 계통연계형 전력변환기의 전력품질개선제어)

  • Lee, J.M.;Jung, S.M.;Suh, I.Y.;Han, S.H.;Mok, H.S.;Choe, G.H.
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.77-79
    • /
    • 2007
  • The phase angle of the utility voltage is used in current control of grid-tied fuel cell power converter. Therefore if the detection of phase angle is a problem, Current control is affected by the distorted phase angle. This paper presents a problem of synchronous reference frame PLL algorithm for single-phase systems and proposes compensated synchronous reference frame PLL algorithm. The proposed method helps power quality improvement of grid-tied fuel cell power converter under distorted utility conditions. Simulation and experimental results are presented to demonstrate the validity of the proposed method.

  • PDF

High-Efficiency Grid-Tied Power Conditioning System for Fuel Cell Power Generation

  • Jeong, Jong-Kyou;Han, Byung-Moon;Lee, Jun-Young;Choi, Nam-Sup
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.551-560
    • /
    • 2011
  • This paper proposes a grid-tied power conditioning system for the fuel cell power generation, which consists of a 2-stage DC-DC converter and a 3-phase PWM inverter. The 2-stage DC-DC converter boosts the fuel cell stack voltage of 26-48V up to 400V, using a hard-switching boost converter and a high-frequency unregulated LLC resonant converter. The operation of the proposed power conditioning system was verified through simulations with PSCAD/EMTDC software. Based on the simulation results, a laboratory experimental set-up was built with a 1.2kW PEM fuel-cell stack to verify the feasibility of hardware implementation. The developed power conditioning system shows a high efficiency of 91%, which is a very positive result for the commercialization.

Grid-tied Power Conditioning System for Fuel Cell Composed of Three-phase Current-fed DC-DC Converter and PWM Inverter

  • Jeong, Jong-Kyou;Lee, Ji-Heon;Han, Byung-Moon;Cha, Han-Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.255-262
    • /
    • 2011
  • This paper proposes a grid-tied power conditioning system for fuel cell, which consists of three-phase current-fed DC-DC converter and three-phase PWM inverter. The three-phase current-fed DC-DC converter boosts fuel cell voltage of 26-48 V up to 400 V with zero-voltage switching (ZVS) scheme, while the three-phase PWM(Pulse Width Modulation) inverter controls the active and reactive power supplied to the grid. The operation of the proposed power conditioning system with fuel cell model is verified through simulations with PSCAD/EMTDC software. The feasibility of hardware implementation is verified through experimental works with a laboratory prototype with 1.2 kW proton exchange membrane (PEM) fuel cell stack. The proposed power conditioning system can be commercialized to interconnect the fuel cell with the power grid.

Grid-tied Power Conditioning System for Battery Energy Storage Composed of 2-stage DC-DC converter (2단 DC-DC 컨버터로 구성된 배터리 에너지저장용 계통연계형 전력변환장치)

  • Park, Ah-Ryeon;Kim, Do-Hyun;Kim, Kyeong-Tae;Han, Byung-Moon;Lee, Jun-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1848-1856
    • /
    • 2012
  • This paper proposes a new grid-tied power conditioning system for battery energy storage, which is composed of a 2-stage DC-DC converter and a PWM inverter. The 2-stage DC-DC converter is composed of an LLC resonant converter connected in cascade with a 2-quadrant hybrid-switching chopper. The LLC resonant converter operates in constant duty ratio, while the 2-quadrant hybrid-switching chopper operates in variable duty ratio for voltage regulation. The operation of proposed system was verified through theoretical analysis and computer simulations. Based on computer simulations, a hardware prototype was built and tested to confirm the technical feasibility of proposed system. The proposed system could have relatively higher efficiency and smaller size than the existing system.

Development of Simulation Model for Grid-tied Fuel-Cell Power Generation with Digital Controlled DC-DC Converter (디지털제어 DC-DC컨버터로 구성된 계통연계 연료전지발전 시뮬레이션모델 개발)

  • Ju, Young-Ah;Cha, Min-Young;Han, Byung-Moon;Kang, Tae-Sub;Cha, Han-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1728-1734
    • /
    • 2009
  • This paper proposes a new power conditioning system for the fuel cell power generation, which consists of a ZVS DC-DC converter and 3-phase inverter. The ZVS DC-DC converter with a digital controller boosts the fuel cell voltage of 26-50V up to 400V, and the grid-tie inverter controls the active power delivered to the grid. The operation of proposed power conditioning system was verified through simulations with PSCAD/EMTDC software. The feasibility of hardware implementation was verified through experimental works with a laboratory prototype, which was built with 1.2kW PEM fuel-cell stack, 1kW DC-DC converter, and 3kW PWM inverter. The proposed system can be utilized to commercialize an interconnection system for the fuel-cell power generation.

A Novel Input and Output Harmonic Elimination Technique for the Single-Phase PV Inverter Systems with Maximum Power Point Tracking (최대출력추종 제어를 포함한 단상 태양광 인버터를 위한 새로운 입출력 고조파 제거법)

  • Amin, Saghir;Ashraf, Muhammad Noman;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.207-209
    • /
    • 2019
  • This paper proposes a grid-tied photovoltaic (PV) system, consisting of Voltage-fed dual-active-bridge (DAB) dc-dc converter with single phase inverter. The proposed converter allows a small dc-link capacitor, so that system reliability can be improved by replacing electrolytic capacitors with film capacitors. The double line frequency free maximum power point tracking (MPPT) is also realized in the proposed converter by using Ripple Correlation method. First of all, to eliminate the double line frequency ripple which influence the reduction of DC source capacitance, control is developed. Then, a designing of Current control in DQ frame is analyzed and to fulfill the international harmonics standards such as IEEE 519 and P1547, $3^{rd}$ harmonic in the grid is directly compensated by the feedforward terms generated by the PR controller with the grid current in stationary frame to achieve desire Total Harmonic Distortion (THD). 5-kW PV converter and inverter module with a small dc-link film capacitor was built in the laboratory with the proposed control and MPPT algorithm. Experimental results are given to validate the converter performance.

  • PDF