References
- Houchati, M., Beitelmal, A.M.H., Khraisheh, M.: Predictive modeling for rooftop solar energy throughput: a machine learning-based optimization for building energy demand scheduling. J. Energy Resour. ASME 144(1), 1-15 (2022) https://doi.org/10.1115/1.4050844
- Liu, L., Zhao, Y., Chang, D.L., Xie, J.Y., Ma, Z., Qie, S., Yin, H.G., Ronald, W.: Prediction of short-term PV power output and uncertainty analysis. Appl. Energy 228(6), 700-711 (2018) https://doi.org/10.1016/j.apenergy.2018.06.112
- Dai, Y., Wang, Y., Leng, M., et al.: LOWESS smoothing and random forest based GRU model: a short-term photovoltaic power generation forecasting method. Energy 256, 124661 (2022)
- Wang, J.X., Guo, L.L., Zhang, C.Y., Song, L., Duan, J.Y., Duan, L.Q.: Thermal power forecasting of solar power tower system by combining mechanism modeling and deep learning method. Energy 208, 118403 (2020)
- Rodriguez, F., Galarza, A., Vasquez, J.C., et al.: Using deep learning and meteorological parameters to forecast the photovoltaic generators intra-hour output power interval for smart grid control. Energy 239, 122116 (2022)
- Chen, X., Ding, K., Zhang, J., Han, W., Liu, Y.J., Yang, Z., Weng, S.: Online prediction of ultra-short-term photovoltaic power using chaotic characteristic analysis, improved PSO and KELM. Energy 248, 123574 (2022)
- Li, J., Niu, H., Meng, F., et al.: Prediction of short-term photovoltaic power via self-attention-based deep learning approach. J. Energy Resour. ASME 144(10), 101301 (2022)
- Huang, X., Li, Q., Tai, Y.H., Chen, Z.Q., Zhang, J., Shi, J.S., Gao, B.X., Liu, W.M.: Hybrid deep neural model for hourly solar irradiance forecasting. Renew. Energy 171(2), 1041-1060 (2021) https://doi.org/10.1016/j.renene.2021.02.161
- Mellit, A., Pavan, A.M., Lughi, V.: Deep learning neural networks for short-term photovoltaic power forecasting. Renew. Energy 172(2), 276-288 (2021) https://doi.org/10.1016/j.renene.2021.02.166
- Feng, Y., Gong, D., Zhang, Q., Cui, N.: Evaluation of temperature-based machine learning and empirical models for predicting daily global solar radiation. Energy Convers. Manag. 198, 111780 (2019)
- Lin, W., Zhang, B., Li, H., et al.: Multi-step prediction of photovoltaic power based on two-stage decomposition and BILSTM. Neurocomputing 504, 56-67 (2022) https://doi.org/10.1016/j.neucom.2022.06.117
- Cui, C.G., Zou, Y.H., Wei, L.L., Wang, Y.D.: Evaluating combination models of solar irradiance on inclined surfaces and forecasting photovoltaic power generation. IET Smart Grid 2(1), 123-130 (2019) https://doi.org/10.1049/iet-stg.2018.0110
- Mayer, M.J.: Influence of design data availability on the accuracy of physical photovoltaic power forecasts. Sol. Energy 227, 532-540 (2021) https://doi.org/10.1016/j.solener.2021.09.044
- Mayer, M.J., Grof, G.: Extensive comparison of physical models for photovoltaic power forecasting. Appl. Energy 283, 116239 (2021)
- Mayer, M.J.: Impact of the tilt angle, inverter sizing factor and row spacing on the photovoltaic power forecast accuracy. Appl. Energy 323, 119598 (2022)
- Wang, F., Lu, X., Mei, S., et al.: A satellite image data based ultra-short-term solar PV power forecasting method considering cloud information from neighboring plant. Energy 238, 121946 (2022) https://doi.org/10.1016/j.energy.2021.121946
- Zhang, J., Zhang, Q., Li, G., et al.: Hybrid model for renewable energy and load forecasting based on data mining and EWT. J. Electr. Eng. Technol. 17(3), 1517-1532 (2022) https://doi.org/10.1007/s42835-021-00986-0
- Das, S.: Short term forecasting of solar radiation and power output of 89.6 kWp solar PV power plant. Mater. Today Proc. 39, 1959-1969 (2021) https://doi.org/10.1016/j.matpr.2020.08.449
- Youssef, A., El-Telbany, M., Zekry, A.: The role of artificial intelligence in photo-voltaic systems design and control: a review. Renew. Sustain. Energy Rev. 78, 72-79 (2017) https://doi.org/10.1016/j.rser.2017.04.046
- Wang, X., Sun, Y., Luo, D., Peng, J.Q.: Comparative study of machine learning approaches for predicting short-term photovoltaic power output based on weather type classification. Energy 240, 122733 (2022)
- Lee, W., Kim, K., Park, J., Kim, J., Kim, A.Y.: Forecasting solar power using long-short term memory and convolutional neural networks. IEEE Access 6, 73068-73080 (2018) https://doi.org/10.1109/ACCESS.2018.2883330
- Xiao, Z., Huang, X., Liu, J., Li, C., Tai, Y.: A novel method based on time series ensemble model for hourly photovoltaic power prediction. Energy 276, 127542 (2023)
- Li, P., Zhou, K., Lu, X., Yang, S.L.: A hybrid deep learning model for short-term PV power forecasting. Appl. Energy 259, 114216 (2020)
- Zhao, W., Zhang, H., Zheng, J., Dai, Y.H., Huang, L.Q., Shang, W.L., Liang, Y.T.: A point prediction method based automatic machine learning for day-ahead power output of multi-region photovoltaic plants. Energy 223, 120026 (2021)
- Kreith, F., Kreider, J.F.: Principles of solar engineering (1978)
- Allen, R.G., Tasumi, M., Trezza, R.: Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-model. J. Irrig. Drain. Eng. 133(4), 380-394 (2007) https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380)
- Campbell, G.S., Norman, J.M.: An introduction to environmental biophysics. Biol. Plant. 21, 104-104 (1979) https://doi.org/10.1007/BF02909456