Acknowledgement
This study was supported by the National Research Foundation of Korea (grant number 2021R1A2C3014577) and Konkuk University Researcher Fund in 2023. We thank our colleagues for their assistance with this study.
References
- Houschyar KS, Borrelli MR, Tapking C, Popp D, Puladi B, Ooms M, et al. 2020. Molecular mechanisms of hair growth and regeneration: current understanding and novel paradigms. Dermatology 236: 271-280. https://doi.org/10.1159/000506155
- Kwack MH, Yang JM, Won GH, Kim MK, Kim JC, Sung YK. 2018. Establishment and characterization of five immortalized human scalp dermal papilla cell lines. Biochem. Biophys. Res. Commun. 496: 346-351. https://doi.org/10.1016/j.bbrc.2018.01.058
- Yang CC, Cotsarelis G. 2010. Review of hair follicle dermal cells. J. Dermatol. Sci. 57: 2-11. https://doi.org/10.1016/j.jdermsci.2009.11.005
- Lee SH, Samuels T, Bock JM, Blumin JH, Johnston N. 2015. Establishment of an immortalized laryngeal posterior commissure cell line as a tool for reflux research. Laryngoscope 125: E73-77. https://doi.org/10.1002/lary.24952
- Cruz ELS, Loureiro FJA, Silva A, Ramos RT, Kataoka M, Pinheiro JJV, et al. 2022. Gene expression in cell lines from human ameloblastoma immortalized using hTERT and HPV16-E6/E7. Oral Dis. 28: 2230-2238. https://doi.org/10.1111/odi.13930
- Ye D, Zhou X, Pan H, Jiang Q, Zhong L, Chen W, et al. 2011. Establishment and characterization of an HPV16 E6/E7-expressing oral squamous cell carcinoma cell line with enhanced tumorigenicity. Med. Oncol. 28: 1331-1337. https://doi.org/10.1007/s12032-010-9558-4
- Zhan K, Lin M, Zhao QM, Zhan JS, Zhao GQ. 2016. Biological characterization of bovine mammary epithelial cell lines immortalized by HPV16 E6/E7 and SV40T. In Vitro Cell. Dev. Biol. Anim. 52: 906-910. https://doi.org/10.1007/s11626-016-0063-8
- Ghittoni R, Accardi R, Hasan U, Gheit T, Sylla B, Tommasino M. 2010. The biological properties of E6 and E7 oncoproteins from human papillomaviruses. Virus Genes 40: 1-13. https://doi.org/10.1007/s11262-009-0412-8
- Hamid NA, Brown C, Gaston K. 2009. The regulation of cell proliferation by the papillomavirus early proteins. Cell. Mol. Life Sci. 66: 1700-1717. https://doi.org/10.1007/s00018-009-8631-7
- Pett M, Coleman N. 2007. Integration of high-risk human papillomavirus: a key event in cervical carcinogenesis? J. Pathol.212: 356-367. https://doi.org/10.1002/path.2192
- Araldi RP, Sant'Ana TA, Modolo DG, de Melo TC, Spadacci-Morena DD, de Cassia Stocco R, et al. 2018. The human papillomavirus (HPV)-related cancer biology: an overview. Biomed. Pharmacother. 106: 1537-1556. https://doi.org/10.1016/j.biopha.2018.06.149
- Arizmendi-Izazaga A, Navarro-Tito N, Jimenez-Wences H, Mendoza-Catalan MA, Martinez-Carrillo DN, Zacapala-Gomez AE, et al. 2021. Metabolic reprogramming in cancer: role of HPV 16 variants. Pathogens 10: 347.
- Fukuda T, Furuya K, Takahashi K, Orimoto A, Sugano E, Tomita H, et al. 2021. Combinatorial expression of cell cycle regulators is more suitable for immortalization than oncogenic methods in dermal papilla cells. iScience 24: 101929.
- Cho YS, Kang JW, Cho M, Cho CW, Lee S, Choe YK, et al. 2001. Down modulation of IL-18 expression by human papillomavirus type 16 E6 oncogene via binding to IL-18. FEBS Lett. 501: 139-145. https://doi.org/10.1016/S0014-5793(01)02652-7
- Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH image to imageJ: 25 years of image analysis. Nat. Methods 9: 671-675. https://doi.org/10.1038/nmeth.2089
- Vieira GV, Somera Dos Santos F, Lepique AP, da Fonseca CK, Innocentini L, Braz-Silva PH, et al. 2022. Proteases and HPV-induced carcinogenesis. Cancers (Basel) 14: 3038.
- Shirasawa H, Jin MH, Shimizu K, Akutsu N, Shino Y, Simizu B. 1994. Transcription-modulatory activity of full-length E6 and E6*I E6*I proteins of human papillomavirus type 16. Virology 203: 36-42. https://doi.org/10.1006/viro.1994.1452
- Zheng Y, Li X, Jiao Y, Wu C. 2022. High-risk human papillomavirus oncogenic E6/E7 mRNAs splicing regulation. Front. Cell Infect. Microbiol. 12: 929666.
- Williams AB, Schumacher B. 2016. p53 in the DNA-Damage-Repair Process. Cold Spring Harb. Perspect. Med. 6: a026070.
- Chen J. 2016. The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression. Cold Spring Harb. Perspect. Med. 6: a026104.
- Hernandez Borrero LJ, El-Deiry WS. 2021. Tumor suppressor p53: Biology, signaling pathways, and therapeutic targeting. Biochim. Biophys. Acta Rev. Cancer 1876: 188556.
- Liu J, Zhang C, Hu W, Feng Z. 2019. Tumor suppressor p53 and metabolism. J. Mol. Cell Biol. 11: 284-292. https://doi.org/10.1093/jmcb/mjy070
- Engeland K. 2018. Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM. Cell Death Differ. 25: 114-132. https://doi.org/10.1038/cdd.2017.172
- Hafner A, Bulyk ML, Jambhekar A, Lahav G. 2019. The multiple mechanisms that regulate p53 activity and cell fate. Nat. Rev. Mol. Cell Biol. 20: 199-210. https://doi.org/10.1038/s41580-019-0110-x
- Dutto I, Tillhon M, Cazzalini O, Stivala LA, Prosperi E. 2015. Biology of the cell cycle inhibitor p21(CDKN1A): molecular mechanisms and relevance in chemical toxicology. Arch. Toxicol. 89: 155-178. https://doi.org/10.1007/s00204-014-1430-4
- Abukhdeir AM, Park BH. 2008. P21 and p27: roles in carcinogenesis and drug resistance. Expert Rev. Mol. Med. 10: e19.
- Karimian A, Ahmadi Y, Yousefi B. 2016. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair (Amst) 42: 63-71. https://doi.org/10.1016/j.dnarep.2016.04.008
- Hwang SG, Lee D, Kim J, Seo T, Choe J. 2002. Human papillomavirus type 16 E7 binds to E2F1 and activates E2F1-driven transcription in a retinoblastoma protein-independent manner. J. Biol. Chem. 277: 2923-2930. https://doi.org/10.1074/jbc.M109113200
- Engeland K. 2022. Cell cycle regulation: p53-p21-RB signaling. Cell Death Differ. 29: 946-960. https://doi.org/10.1038/s41418-022-00988-z
- Rubin SM, Sage J, Skotheim JM. 2020. Integrating old and new paradigms of G1/S control. Mol. Cell 80: 183-192. https://doi.org/10.1016/j.molcel.2020.08.020
- Makela JA, Toppari J. 2022. Retinoblastoma-E2F transcription factor interplay is essential for testicular development and male fertility. Front. Endocrinol (Lausanne). 13: 903684.
- Kent LN, Leone G. 2019. The broken cycle: E2F dysfunction in cancer. Nat. Rev. Cancer 19: 326-338. https://doi.org/10.1038/s41568-019-0143-7
- Chen X, Liu B, Li Y, Han L, Tang X, Deng W, et al. 2019. Dihydrotestosterone regulates hair growth through the Wnt/beta-catenin pathway in C57BL/6 mice and in vitro organ culture. Front. Pharmacol. 10: 1528.
- Enshell-Seijffers D, Lindon C, Kashiwagi M, Morgan BA. 2010. Beta-catenin activity in the dermal papilla regulates morphogenesis and regeneration of hair. Dev. Cell 18: 633-642. https://doi.org/10.1016/j.devcel.2010.01.016
- Kiratipaiboon C, Tengamnuay P, Chanvorachote P. 2015. Glycyrrhizic acid attenuates stem cell-like phenotypes of human dermal papilla cells. Phytomedicine 22: 1269-1278. https://doi.org/10.1016/j.phymed.2015.11.002
- Osada A, Iwabuchi T, Kishimoto J, Hamazaki TS, Okochi H. 2007. Long-term culture of mouse vibrissal dermal papilla cells and de novo hair follicle induction. Tissue Eng. 13: 975-982. https://doi.org/10.1089/ten.2006.0304
- Bejaoui M, Oliva AK, Ke MS, Ferdousi F, Isoda H. 2022. 3D Spheroid human dermal papilla cell as an effective model for the screening of hair growth promoting compounds: examples of minoxidil and 3,4,5-Tri-O-caffeoylquinic acid (TCQA). Cells 11: 2093.
- Kang BM, Kwack MH, Kim MK, Kim JC, Sung YK. 2012. Sphere formation increases the ability of cultured human dermal papilla cells to induce hair follicles from mouse epidermal cells in a reconstitution assay. J. Invest. Dermatol. 132: 237-239. https://doi.org/10.1038/jid.2011.250
- Reynolds AJ, Jahoda CA. 1996. Hair matrix germinative epidermal cells confer follicle-inducing capabilities on dermal sheath and high passage papilla cells. Development 122: 3085-3094. https://doi.org/10.1242/dev.122.10.3085
- Kobayashi T, Fujisawa A, Amagai M, Iwasaki T, Ohyama M. 2011. Molecular biological and immunohistological characterization of canine dermal papilla cells and the evaluation of culture conditions. Vet. Dermatol. 22: 414-422. https://doi.org/10.1111/j.1365-3164.2011.00964.x
- Havlickova B, Biro T, Mescalchin A, Tschirschmann M, Mollenkopf H, Bettermann A, et al. 2009. A human folliculoid microsphere assay for exploring epithelial- mesenchymal interactions in the human hair follicle. J. Invest. Dermatol. 129: 972-983. https://doi.org/10.1038/jid.2008.315
- Radisky DC, LaBarge MA. 2008. Epithelial-mesenchymal transition and the stem cell phenotype. Cell Stem Cell. 2: 511-512. https://doi.org/10.1016/j.stem.2008.05.007
- Guo W, Keckesova Z, Donaher JL, Shibue T, Tischler V, Reinhardt F, et al. 2012. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 148: 1015-1028. https://doi.org/10.1016/j.cell.2012.02.008
- Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E. 2004. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118: 635-648. https://doi.org/10.1016/j.cell.2004.08.012
- Driskell RR, Giangreco A, Jensen KB, Mulder KW, Watt FM. 2009. Sox2-positive dermal papilla cells specify hair follicle type in mammalian epidermis. Development 136: 2815-2823. https://doi.org/10.1242/dev.038620