• Title/Summary/Keyword: hair follicle formation

Search Result 19, Processing Time 0.026 seconds

Wound-Induced Hair Follicle Neogenesis as a Promising Approach for Hair Regeneration

  • Chaeryeong Lim;Jooyoung Lim;Sekyu Choi
    • Molecules and Cells
    • /
    • v.46 no.10
    • /
    • pp.573-578
    • /
    • 2023
  • The mammalian skin contains hair follicles, which are epidermal appendages that undergo periodic cycles and exhibit mini-organ features, such as discrete stem cell compartments and different cellular components. Wound-induced hair follicle neogenesis (WIHN) is the remarkable ability to regenerate hair follicles after large-scale wounding and occurs in several adult mammals. WIHN is comparable to embryonic hair follicle development in its processes. Researchers are beginning to identify the stem cells that, in response to wounding, develop into neogenic hair follicles, as well as to understand the functions of immune cells, mesenchymal cells, and several signaling pathways that are essential for this process. WIHN represents a promising therapeutic approach to the reprogramming of cellular states for promoting hair follicle regeneration and preventing scar formation. In the scope of this review, we investigate the contribution of several cell types and molecular mechanisms to WIHN.

The Hairless Gene: A Putative Navigator of Hair Follicle Development

  • Kim, Jeong-Ki;Kim, Bong-Kyu;Park, Jong-Keun;Choi, Jee-Hyun;KimYoon, Sung-Joo
    • Genomics & Informatics
    • /
    • v.9 no.3
    • /
    • pp.93-101
    • /
    • 2011
  • The Hairless (HR ) gene regulates the expression of several target genes as a transcriptional corepressor of nuclear receptors. The hair follicle (HF), a small independent organ of the skin, resides in the epidermis and undergoes regenerative cycling for normal hair formation. HF development requires many genes and signaling pathways to function properly in time and space, one of them being the HR gene. Various mutations of the HR gene have been reported to cause the hair loss pheno-type in rodents and humans. In recent studies, it has been suggested that the HR gene is a critical player in the regulation of the hair cycle and, thus, HF development. Furthermore, the HR gene is associated with the Wnt signaling pathway, which regulates proliferation and differentiation of cells and plays an essential role in hair and skin development. In this review, we summarize the mutations responsible for human hair disorders and discuss the roles of the HR gene in HF development.

Establishment and Characterization of Immortalized Human Dermal Papilla Cells Expressing Human Papillomavirus 16 E6/E7

  • Seonhwa Kim;Kyeong-Bae Jeon;Hyo-Min Park;Jinju Kim;Chae-Min Lim;Do-Young Yoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.506-515
    • /
    • 2024
  • Primary human dermal papilla cells (HDPCs) are often preferred in studies on hair growth and regeneration. However, primary HDPCs are limited by their reduced proliferative capacity, decreased hair induction potential, and extended doubling times at higher passages. To overcome these limitations, pTARGET vectors containing human papillomavirus16 (HPV16) E6/E7 oncogenes were transfected into HDPCs and selected using G-148 to generate immortalized cells here. HPV16 E6/E7 oncogenes were efficiently transfected into primary HDPCs. Immortalized HDPC showed higher proliferative activity than primary HDPC, confirming an increased proliferation rate. Expression of p53 and pRb proteins was downregulated by E6 and E7, respectively. E6/E7 expressing HDPC cells revealed that cyclin-dependent kinase (CDK) inhibitor p21 expression was decreased, while cell cycle-related genes and proteins (CDK2 and cyclin E) and E2F family genes were upregulated. Immortalized HDPCs maintained their responsiveness to Wnt/β-catenin pathway and hair follicle formation capability, as indicated by their aggregative properties and stemness. E6/E7 immortalized HDPCs may facilitate in vitro hair growth and regeneration studies.

Modification of Radiation Response in Mice by Dongchongxiacao(Paecilomyces japonica) (고선량 및 저선량 방사선 조사 마우스에서 누에동충하초(Paecilomyces japonica)의 효과)

  • Kim, Se-ra;Oh, Heon;Lee, Hae-june;Shin, Dong-ho;Kim, Jong-choon;Park, In-chul;Oh, Ki-seok;Jo, Sung-kee;Kim, Sung-ho
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.2
    • /
    • pp.181-188
    • /
    • 2003
  • Cordyceps has a reputation for its broad biological activities and as a tonic which replenishs vital function in Chinese traditional medicines. As an attempt to obtain fundamental data for the development of new type Cordyceps, the effects of the fruiting bodies of cultivated fungus of Paecilomyces japonica grown on silkworm larvae on radiationinduced damages were investigated. We performed this study to determine the effect of Dongchongxiacao (Paecilomyces japonica) on jejunal crypt survival, endogenous spleen colony formation, and apoptosis in jejunal crypt cells and hair follicles of mice irradiated with high and low dose of gamma-radiation. Treatment with Dongchongxiacao showed no significant modifying effects on the jejunal crypt survival and endogenous spleen colony formation. The frequency of radiationinduced apoptosis was reduced by pretreatment of Dongchongxiacao (i.p.: 50 mg/kg of body weight, at 12 and 36 hours before irradiation, p<0.01). The spontaneous levels of apoptotic cells are $0.082{\pm}0.041$ in intestinal crypts and $0.231{\pm}0.084$ per hair follicle section of skin. Pretreatment of Dongchongxiacao was associated with decreases of 26.86% in intestinal crypt and 66.36% in hair follicle decrease in the number of cells with nuclei positively stained for apoptosis compared with the irradiation control group. We demonstrated for the first time that Dongchongxiacao administration could reduce the extent of apoptosis produced by radiation in the hair follicle. The results presented herein that Dongchongxiacao given before irradiation is capable of reducing the severity of cell loss as a result of apoptosis.

Ginsenoside Re prevents 3-methyladenine-induced catagen phase acceleration by regulating Wnt/β-catenin signaling in human dermal papilla cells

  • Gyusang Jeong;Seung Hyun Shin;Su Na Kim;Yongjoo Na;Byung Cheol Park;Jeong Hun Cho;Won-Seok Park;Hyoung-June Kim
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.440-447
    • /
    • 2023
  • Background: The human hair follicle undergoes cyclic phases-anagen, catagen, and telogen-throughout its lifetime. This cyclic transition has been studied as a target for treating hair loss. Recently, correlation between the inhibition of autophagy and acceleration of the catagen phase in human hair follicles was investigated. However, the role of autophagy in human dermal papilla cells (hDPCs), which is involved in the development and growth of hair follicles, is not known. We hypothesized that acceleration of hair catagen phase upon inhibition of autophagy is due to the downregulation of Wnt/β-catenin signaling in hDPCs, and that components of Panax ginseng extract can increase the autophagic flux in hDPCs. Methods: We generated an autophagy-inhibited condition using 3-methyladenine (3-MA), a specific autophagy inhibitor, and investigated the regulation of Wnt/β-catenin signaling using the luciferase reporter assay, qRT-PCR, and western blot analysis. In addition, cells were cotreated with ginsenoside Re and 3-MA and their roles in inhibiting autophagosome formation were investigated. Results: We found that the unstimulated anagen phase dermal papilla region expressed the autophagy marker, LC3. Transcription of Wnt-related genes and nuclear translocation of β-catenin were reduced after treatment of hDPCs with 3-MA. In addition, treatment with the combination of ginsenoside Re and 3-MA changed the Wnt activity and hair cycle by restoring autophagy. Conclusions: Our results suggest that autophagy inhibition in hDPCs accelerates the catagen phase by downregulating Wnt/β-catenin signaling. Furthermore, ginsenoside Re, which increased autophagy in hDPCs, could be useful for reducing hair loss caused by abnormal inhibition of autophagy.

Anti-Graying Effect of Pueraria Lobata Root Extract on Stress-Induced Hair Graying (갈근 추출물의 스트레스성 백모 형성 억제 효과)

  • Hong, Min Jung;Park, Byung Cheol;Hong, Yong Deog;Kim, Su Na
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.3
    • /
    • pp.287-293
    • /
    • 2022
  • Gray hair is a representative sign of aging. Intrinsic aging, stress, and the external environment cause hair graying. Stress is known to be a major factor in the early onset of hair graying. We previously found that Pueraia lobata root extract (PLRE) can prevent hair graying by promoting melanin formation. However, it remains unknown whether PLRE can prevent hair graying induced by conditions of stress. In this study, we confirmed the effect of PLRE on stress-induced hair graying. A reporter cell line was newly constructed to confirm the expression of microphthalamia-associated transcription factor (MITF), the main transcription factor for melanin production. MITF expression and melanin pigmentation were reduced in human hair follicle tissue treated with the stress hormone cortisol or H2O2 to induce oxidative stress. PLRE treatment restored MITF expression and increased the amount of melanin pigment in the hair follicle. The expression of Tyrosinase related proteins-2 (TRP-2), a melanin synthesis enzyme in the hair follicle, also increased. In conclusion, PLRE can effectively prevent the inhibition of melanin synthesis by stress hormones and oxidative stress.

miR-133a-3p and miR-145-5p co-promote goat hair follicle stem cell differentiation by regulating NANOG and SOX9 expression

  • Jian Wang;Xi Wu;Liuming Zhang;Qiang Wang;Xiaomei Sun;Dejun Ji;Yongjun Li
    • Animal Bioscience
    • /
    • v.37 no.4
    • /
    • pp.609-621
    • /
    • 2024
  • Objective: Hair follicle stem cells (HFSCs) differentiation is a critical physiological progress in skin hair follicle (HF) formation. Goat HFSCs differentiation is one of the essential processes of superior-quality brush hair (SQBH) synthesis. However, knowledge regarding the functions and roles of miR-133a-3p and miR-145-5p in differentiated goat HFSCs is limited. Methods: To examine the significance of chi-miR-133a-3p and chi-miR-145-5p in differentiated HFSCs, overexpression and knockdown experiments of miR-133a-3p and miR-145-5p (Mimics and Inhibitors) separately or combined were performed. NANOG, SOX9, and stem cell differentiated markers (β-catenin, C-myc, Keratin 6 [KRT6]) expression levels were detected and analyzed by using real-time quantitative polymerase chain reaction, western blotting, and immunofluorescence assays in differentiated goat HFSCs. Results: miR-133a-3p and miR-145-5p inhibit NANOG (a gene recognized in keeping and maintaining the totipotency of embryonic stem cells) expression and promote SOX9 (an important stem cell transcription factor) expression in differentiated stem cells. Functional studies showed that miR-133a-3p and miR-145-5p individually or together overexpression can facilitate goat HFSCs differentiation, whereas suppressing miR-133a-3p and miR-145-5p or both inhibiting can inhibit goat HFSCs differentiation. Conclusion: These findings could more completely explain the modulatory function of miR-133a-3p and miR-145-5p in goat HFSCs growth, which also provide more understandings for further investigating goat hair follicle development.

Udenafil Induces the Hair Growth Effect of Adipose-Derived Stem Cells

  • Choi, Nahyun;Sung, Jong-Hyuk
    • Biomolecules & Therapeutics
    • /
    • v.27 no.4
    • /
    • pp.404-413
    • /
    • 2019
  • Udenafil, which is a $PDE_5$ inhibitor, is used to treat erectile dysfunction. However, it is unclear whether udenafil induces hair growth via the stimulation of adipose-derived stem cells (ASCs). In this study, we investigated whether udenafil stimulates ASCs and whether increased growth factor secretion from ASCs to facilitate hair growth. We found that subcutaneous injection of udenafiltreated ASCs accelerated telogen-to-anagen transition in vivo. We also observed that udenafil induced proliferation, migration and tube formation of ASCs. It also increased the secretion of growth factors from ASCs, such as interleukin-4 (IL-4) and IL12B, and the phosphorylation of ERK1/2 and $NF{\kappa}B$. Furthermore, concomitant upregulation of IL-4 and IL12B mRNA levels was attenuated by ERK inhibitor or $NF{\kappa}B$ knockdown. Application of IL-4 or IL12B enhanced anagen induction in mice and increased hair follicle length in organ culture. The results indicated that udenafil stimulates ASC motility and increases paracrine growth factor, including cytokine signaling. Udenafil-stimulated secretion of cytokine from ASCs may promote hair growth via the ERK and $NF{\kappa}B$ pathways. Therefore, udenafil can be used as an ASC-preconditioning agent for hair growth.

Promotion effects of steam-dried Betula platyphylla extract on hair regrowth (자작나무 증포 추출물의 발모 촉진 효과)

  • Ahn, Jeong Won;Jang, Su Kil;Jo, Bo Ram;Kim, Hyun Soo;Jeoung, Eui Young;Hillary, Kithenya;Yoo, Yeong Min;Joo, Seong Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.1
    • /
    • pp.43-51
    • /
    • 2022
  • Regulation of the hair follicle cycle in association with dermal papilla cells is one of the most interesting targets for promoting hair regrowth. In this study, we examined whether steam-dried Betula platyphylla extracts (BPE) promote hair growth by upregulating in vitro and in vivo responses of dermal papilla cells. The data showed that BPE3 contained high amounts of phenolic compounds with higher antioxidant effects and increased hair growth-related genes, including fibroblast growth factor7 and Wnt7b, in dermal papilla cells. Notably, BPE3 effectively enhanced the formation of hair follicles by increasing FGF7, Wnt7b, and vascular endothelial growth factor in C57BL/6N dorsal skins. Additionally, BPE3 significantly decreased the expression of inflammatory repertoires, inducible nitric oxide synthase, interleukin-6, and cyclooxygenase 2. Several small molecules, such as betulin and unsaturated fatty acids, support the pharmacological activity of BPE3. In conclusion, BPE3 effectively promoted hair growth by activating dermal papilla cells and enhancing hair follicle cycles by attenuating the inflammatory environment in the scalp.

Human umbilical cord blood mesenchymal stem cells engineered to overexpress growth factors accelerate outcomes in hair growth

  • Bak, Dong Ho;Choi, Mi Ji;Kim, Soon Re;Lee, Byung Chul;Kim, Jae Min;Jeon, Eun Su;Oh, Wonil;Lim, Ee Seok;Park, Byung Cheol;Kim, Moo Joong;Na, Jungtae;Kim, Beom Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.5
    • /
    • pp.555-566
    • /
    • 2018
  • Human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) are used in tissue repair and regeneration; however, the mechanisms involved are not well understood. We investigated the hair growth-promoting effects of hUCB-MSCs treatment to determine whether hUCB-MSCs enhance the promotion of hair growth. Furthermore, we attempted to identify the factors responsible for hair growth. The effects of hUCB-MSCs on hair growth were investigated in vivo, and hUCB-MSCs advanced anagen onset and hair follicle neogeneration. We found that hUCB-MSCs co-culture increased the viability and up-regulated hair induction-related proteins of human dermal papilla cells (hDPCs) in vitro. A growth factor antibody array revealed that secretory factors from hUCB-MSCs are related to hair growth. Insulin-like growth factor binding protein-1 (IGFBP-1) and vascular endothelial growth factor (VEGF) were increased in co-culture medium. Finally, we found that IGFBP-1, through the co-localization of an IGF-1 and IGFBP-1, had positive effects on cell viability; VEGF secretion; expression of alkaline phosphatase (ALP), CD133, and ${\beta}-catenin$; and formation of hDPCs 3D spheroids. Taken together, these data suggest that hUCB-MSCs promote hair growth via a paracrine mechanism.