DOI QR코드

DOI QR Code

316H 스테인리스 강 위에 적층 제조된 순수 니켈층의 원소 확산거리 연구

Study on the Elemental Diffusion Distance of a Pure Nickel Layer Additively Manufactured on 316H Stainless Steel

  • 고의준 (국립한밭대학교 신소재공학과) ;
  • 이원찬 (국립한밭대학교 신소재공학과) ;
  • 신기승 (한국원자력연구원 재료안전기술연구부) ;
  • 윤지현 (한국원자력연구원 재료안전기술연구부) ;
  • 김정한 (국립한밭대학교 신소재공학과)
  • UiJun Ko (Department of Materials Science & Engineering, Hanbat National University) ;
  • Won Chan Lee (Department of Materials Science & Engineering, Hanbat National University) ;
  • Gi Seung Shin (Materials Safety Technology Research Division, Korea Atomic Energy Research Institute) ;
  • Ji-Hyun Yoon (Materials Safety Technology Research Division, Korea Atomic Energy Research Institute) ;
  • Jeoung Han Kim (Department of Materials Science & Engineering, Hanbat National University)
  • 투고 : 2024.06.14
  • 심사 : 2024.06.18
  • 발행 : 2024.06.28

초록

Molten salt reactors represent a promising advancement in nuclear technology due to their potential for enhanced safety, higher efficiency, and reduced nuclear waste. However, the development of structural materials that can survive under severe corrosion environments is crucial. In the present work, pure Ni was deposited on the surface of 316H stainless steel using a directed energy deposition (DED) process. This study aimed to fabricate pure Ni alloy layers on an STS316H alloy substrate. It was observed that low laser power during the deposition of pure Ni on the STS316H substrate could induce stacking defects such as surface irregularities and internal voids, which were confirmed through photographic and SEM analyses. Additionally, the diffusion of Fe and Cr elements from the STS316H substrate into the Ni layers was observed to decrease with increasing Ni deposition height. Analysis of the composition of Cr and Fe components within the Ni deposition structures allows for the prediction of properties such as the corrosion resistance of Ni.

키워드

과제정보

이 논문은 2022년도 정부(방위사업청)의 재원으로 국방기술진흥연구소의 지원을 받아 수행된 연구임 (21-107-F00-018(KRIT-CT-22-017), 차세대 다목적 고출력 전력생산기술(열원공급모듈 설계기술))

참고문헌

  1. J. Serp, M. Allibert, O. Benes, S. Delpech, O. Feynberg, V. Ghetta, D. Heuer, D. Holcomb, V. Ignatiev, J. L. Kloosterman, L. Luzzi, E. M. Lucotte, J. Uhlir, R. Yoshioka, and D. Zhimin: Prog. Nucl. Energy., 77 (2014) 308.
  2. K. O. Lee, M. A. Jessee, A. M. Graham, and D. J. Kropaczek: Nucl. Eng. Des., 417 (2024) 112824.
  3. Wang Y, Zhu C, Zhang M, Zhou W (2024) Chapter 9 - Molten salt reactors. In: Wang J, Talabi S, Leon SB y (eds) Nuclear Power Reactor Designs. Academic Press, pp 163-183
  4. Gomes DDS (2023) OVERVIEW OF THE PHYSICAL PROPERTIES OF MOLTEN SALT REACTOR USING FLIBE. JER 3:2-12. https://doi.org/10.22533/at.ed.3173362325107
  5. T. Ghaznavi, S. Y. Persaud and R. C. Newman: J. Electrochem. Soc., 169 (2022) 061502.
  6. F.-Y. Ouyang, C.-H. Chang and J.-J. Kai: J. Nucl. Mater., 446 (2014) 81.
  7. T. Ghaznavi, M. A. Bryk, S. Y. Persaud and R. C. Newman: Corros. Sci., 197 (2022) 110003.
  8. C. M. Abreu, M. J. Cristobal, R. Losada, X. R. Novoa, G. Pena and M. C. Perez: Electrochem. Acta, 51 (2006) 2991.
  9. M. Kondo,T. Nagasaka,T. Muroga,A. Sagara,N. Noda,Q. Xu,D. Ninomiya,N. Masaru,A. Suzuki and T. Terai: Fusion Sci. Technol., 56 (2009).
  10. A. I. Surenkov, V. V. Ignat'ev, S. S. Abalin, S. A. Konakov and V. S. Uglov: At. Energy, 124 (2018) 43.
  11. V. Errico, A. Fusco and S. L. Campanelli: Surf. Coat. Technol., 429 (2022) 127965.
  12. C. W. Park, R. N. Hajra, N. K. Adomako, W. Choo, S.-M. Yang, S.-J. Seo and J. H. Kim: Mater. Lett., 337 (2023) 133936.
  13. W. H. Kim, J. Ko and J. H. Kim: J. Powder Mater., 29 (2022) 314.
  14. J. Shao, G. Yu, S. Li, X. He, C. Tian and B. Dong: J. Alloys and Compd., 898 (2022) 162976.
  15. S. Sanchez, P. Smith, Z. Xu, G. Gaspard, C. J. Hyde, W. W. Wits, I. A. Ashcroft, H. Chen and A. T. Clare: Int. J. Mach. Tools Manuf., 165 (2021) 103729.
  16. K. Sridharan, T. R. Allen: Molten Salts Chem., (2013) 241.