DOI QR코드

DOI QR Code

Trends in Materials Modeling and Computation for Metal Additive Manufacturing

  • Seoyeon Jeon (School of Materials Science and Engineering, Kookmin University) ;
  • Hyunjoo Choi (School of Materials Science and Engineering, Kookmin University)
  • 투고 : 2024.06.11
  • 심사 : 2024.06.20
  • 발행 : 2024.06.28

초록

Additive Manufacturing (AM) is a process that fabricates products by manufacturing materials according to a three-dimensional model. It has recently gained attention due to its environmental advantages, including reduced energy consumption and high material utilization rates. However, controlling defects such as melting issues and residual stress, which can occur during metal additive manufacturing, poses a challenge. The trial-and-error verification of these defects is both time-consuming and costly. Consequently, efforts have been made to develop phenomenological models that understand the influence of process variables on defects, and mechanical/ electrical/thermal properties of geometrically complex products. This paper introduces modeling techniques that can simulate the powder additive manufacturing process. The focus is on representative metal additive manufacturing processes such as Powder Bed Fusion (PBF), Direct Energy Deposition (DED), and Binder Jetting (BJ) method. To calculate thermal-stress history and the resulting deformations, modeling techniques based on Finite Element Method (FEM) are generally utilized. For simulating the movements and packing behavior of powders during powder classification, modeling techniques based on Discrete Element Method (DEM) are employed. Additionally, to simulate sintering and microstructural changes, techniques such as Monte Carlo (MC), Molecular Dynamics (MD), and Phase Field Modeling (PFM) are predominantly used.

키워드

과제정보

This study was financially supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (No. NRF-2022R1A5A1030054).

참고문헌

  1. H. Lipson and M Kurman, Indianapolis, Indiana: John Wiley and Sons, Inc, (2013)
  2. A. Bandyopadhyay, K. D. Traxel, M. Lang, M. Juhasz, N. Eliaz, and S. Bose: Mater. Today., 52 (2022) 207.
  3. J. Giannatisis and V. Dedoussis: Int. J. Adv. Manuf. Technol., 40 (2009) 116.
  4. S. C. Altiparmak, V. A. Yardley, Z. Shi, and J. Lin: Int. J. Lightweight Mater. Manuf., 4 (2021) 246.
  5. S. Wickramasinghe, T. Do, and P. Tran: Polymers., 12 (2020) 1529.
  6. K. Chatterjee and T. K. Ghosh: Ghosh., 32 (2020) 1902086.
  7. D. M. Nieto, V. C Lopez, and S. I. Molina: Addit. Manuf., 23 (2018) 79.
  8. C. L. Cramer, E. Ionescu, M. G. Zajac, A. T. Nelson, Y. Katoh, J. J. Haslam, L. Wondraczek, T. G. Aguirre, S. Leblanc, H. Wang, M. Masoudi, E. Tegeler, R. Riedel, P. Colombo, and M. M. Joladan: J. Eur. Ceram. Soc., 42 (2022) 3049.
  9. S. Jeon, S Park, Y Song, J Park, H Park, B Lee, and H Choi: J. Powder Mater., 30 (2023) 463.
  10. S. Park, Y. Song, J. Yeo, S. Han, and H. Choi: J. Powder Mater., 30 (2023) 255.
  11. Y. Li and Q. Bai: Chin. J. Mech. Eng., 30 (2017) 515.
  12. W. S. Cai, H. Z. Lu, H. Z. Li, Z. Liu, H. B. Ke, W. H. Wang, and C. Yang: J. Mater. Sci. Technol., 138 (2023) 80.
  13. M. P. Behera, T. Dougherty, and S. Singamneni: Procedia Manuf., 30 (2019) 159.
  14. B. Kianian, Fort Collins, Colorado, USA: Wohlers Associates, Inc, (2016)
  15. L. Yang, K. Hsu, B. Baughman, D. Godfrey, F. Medina, M. Menon, and S. Wiener, Cham: Springer, (2017) 45.
  16. ASTM, ASTM International. (2012)
  17. J. W. Choi and H. C. Kim: J. Kor. Soc. Manuf. Process Eng., 14 (2015) 1.
  18. I. H. Lee, H. C. Kim, and D. G. Ahn: J. Kor. Soc. Precision Eng., 37 (2015) 929.
  19. T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, and W. Zhang: Progress in Mater. Sci., 92 (2018) 112.
  20. V. Manvatkar, A. De, and T. DebRoy: J. Appl. Phys., 116 (2014) 124905.
  21. V. Manvatkar, A. De, and T. DebRoy: Mater. Sci. Technol., 31 (2015) 924.
  22. T. Mukherjee, H. L. Wei, A. De, and T. DebRoy: Comput. Mater. Sci., 150 (2018) 369.
  23. C. Korner, E. Attar, and P. Heinl: J. Mater. Process. Technol., 211 (2011) 978.
  24. B. de La Batut, O. Fergani, V. Brotan, M. Bambach, and M. El Mansouri: J. Manuf. Mater. Process., 1 (2017) 3.
  25. P. Burgardt and C. R. Heiple: Heiple: Welding J., 71 341.
  26. R. T. Brown: J. Laser Appl., 20 (2008) 201.
  27. Y. Javid, M. Ghoreishi, and S. Shamsaei: Lasers in Engineering (Old City Publishing)., 22 (2012) 1.
  28. P. Farahmand and R. Kovacevic: Opt. Laser Technol., 63 (2014) 154.
  29. A. J. Pinkerton and L. Li: J. Eng. Manuf., 218 (2004) 363.
  30. X. Wang, T. Laoi, J. Bonse, J.-P. Kruth, B. Lauwers, and L. Froyen: Int. J. Adv. Manuf. Technol., 19 (2002) 351.
  31. T. DebToy and S. A. David: Rev. Mod. Phys., 67 (1995) 85.
  32. J. H. K. Tan, S. L. Sing, and W. Y. Yeong: Virtural and Physical Prototyping., 15 (2020) 87.
  33. L. Ming, D. Wenchao, A. Elwany, Z. Pei, and C. Ma: Manuf. Sci. Eng., 142 (2020) 090801.
  34. J. A. Gonzalez, J. Mireles, Y. Lin, and R. B Wicker: Ceram. Int., 42 (2016) 10559.
  35. C. Meir, R. Weissbach, J. Winberg, W. A. Wall, and A. J. Hart: J. Mater. Process. Technol., 266 (2019) 484.
  36. G. Miao, W. Du, Z. Pei, and C. Ma: Int. Manuf. Sci. Eng. Conf., 1 (2019)
  37. H. Tan: Chem. Eng. Sci., 153 (2016) 93.
  38. M. Uhlmann: J. Comput. Phys., 209 (2005) 448.
  39. L. R. Madhavrao and R. Rafagopalan: J. Mater. Res., 4 (1989) 1251.
  40. K. Mori, H. Matsubara, and N. Noguchi: Int. J. Mechanical Sci., 46 (2004) 841.
  41. W. Boettinger, J. Warren, C. Beckermann, and A. Karma: Annu. Rev. Mater., 32 (2002) 163.