• Title/Summary/Keyword: submerged plate

Search Result 119, Processing Time 0.048 seconds

Hydrodynamic Forces Acting on the Submerged-Plate

  • Lee Sang Min;Kong Gil Young;Kim Chol-Seong;Lee Yun Sok
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.11a
    • /
    • pp.149-153
    • /
    • 2003
  • The hydrodynamic forces acting on the submerged plate are composed of diffraction and radiation forces. Thus we have carried out the extensive experiments and numerical simulations to make clear the characteristics of the diffraction and radiation forces on the submerged plate. These experimental results are compared with the numerical ones, and we discuss the effect of nonlinear on the hydrodynamic forces acting on the submerged plate. As a result, we get the conclusion that the submerged plate is useful for reducing the wave exciting forces on the structure behind the submerged plate.

  • PDF

Characteristics of Wave Exciting Forces on a Very Large Floating Structure with Submerged-Plate

  • Lee Sang-Min;Hong Chun-Beom
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.2061-2067
    • /
    • 2005
  • In this study, we focus on the submerged plate built into the Very Large Floating Structure with the partial openings of Sm long, which enables the reverse flow of incident wave to generate the wave breaking. The purpose of this study is to investigate the characteristics of wave exciting forces acting on the submerged plate and the fore part of VLFS. Firstly, we have carried out the extensive experiments to understand the characteristics of the wave exciting forces. Then we have performed the numerical simulations by applying the Marker and Cell method (MAC method) and compared with the experimental results. We discuss the validity of MAC method and the effects of the submerged plate on the motion of VLFS. As a result, we get the conclusion that the submerged plate is useful for reducing the wave exciting forces acting on the structure behind the submerged plate.

Hydroelastic Response of VLFS with Submerged-Plate Using Modified Hydrodynamic Coefficients

  • Lee, Sang-Min
    • Journal of Navigation and Port Research
    • /
    • v.31 no.7
    • /
    • pp.569-578
    • /
    • 2007
  • The primary objective of this study is to present a modified method of hydroelastic analysis and application of it to the VLFS with submerged plate. The modal analysis method is applied to the VLFS with the submerged plate using the modified hydrodynamic coefficients. Namely, the wave exciting forces are modified by the transmission wave coefficients, while the interaction factor is used for the modification of radiation forces. To validate the proposed method, comparisons between the numerical calculations and experimental data have been carried out for the deflections of VLFS, and it shows good agreement between the calculation and experiment. The results presented in this study demonstrate that the elastic response of the VLFS is strongly affected by the hydrodynamic interaction induced by the submerged plate. As a result, we can confirm that the submerged plate is useful for reducing the hydroelastic deflection of VLFS, and the proposed method is valuable for predicting the elastic response of VLFS with attached the submerged plate.

Natural Vibration Characteristics of Cantilever Plate Partially Submerged into Water (수중에 부분 몰수된 외팔보의 고유진동 특성)

  • Kwak, Moon K.;Yang, Dong-Ho;Lee, Jae-Ha
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.229-230
    • /
    • 2012
  • The free flexural vibration of a cantilever plate partially submerged in a fluid is investigated. The fluid is assumed to be inviscid and irrotational. The virtual mass matrix is derived by solving the boundary-value problem related to the fluid motion using elliptical coordinates. The introduction of the elliptical coordinates naturally leads to the use of the Mathieu function. Hence, the virtual mass matrix which reflects the effect of the fluid on the natural vibration characteristics is expressed in analytical form in terms of the Mathieu functions. The virtual mass matrix is then combined with the dynamic model of a thin rectangular plate obtained by using the Rayleigh-Ritz method. This combination is used to analyze the natural vibration characteristics of a partially submerged cantilever plate qualitatively. Also, the non-dimensionalized added virtual mass incremental factors for a partially submerged cantilever plate are presented to facilitate the easy estimation of natural frequencies of a partially submerged cantilever plate. The numerical results validate the proposed approach.

  • PDF

The Wave Exciting Forces Acting on a Submerged-Plate

  • Lee, Sang-Min
    • Journal of Navigation and Port Research
    • /
    • v.28 no.7
    • /
    • pp.641-645
    • /
    • 2004
  • In this study, we focus on the submerged plate built into the Very Large Floating Structure with the partial openings of 5m long, which enables the reverse flow of incident wave to generate the wave breaking. The purpose of this study is to investigate the characteristics of wave exciting forces acting on the submerged plate. Firstly, we have carried out the extensive experiments to understand the characteristics of the wave exciting forces. Then we have performed the numerical simulations by applying the Marker and Cell method and compared with the experimental results. We discuss the validity of MAC method and the effects of the submerged plate on the motion of VLFS.

The Wave Exciting Forces Acting on a Submerged-Plate

  • Lee, Sang-Min;Kong, Gil-Young;Kim, Chol-Seong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.203-207
    • /
    • 2004
  • In this study, we focus on the submerged plate built into the Very Large Floating Structure with the partial openings of 5m long, which enables the reverse flow of incident wave to generate the wave breaking. The purpose of this study is to investigate the characteristics of wave exciting forces acting on the submerged plate. Firstly, we have carried out the extensive experiments to understand the characteristics of the wave exciting forces. Then we have performed the numerical simulations by applying the Marker and Cell method and compare with the experimental results. We discuss the validity of MAC method and the effects of the submerged plate on the motion of VLFS.

  • PDF

Wave Diffractions by Submerged Flat Plate in oblique Waves (경사파중 수중평판에 의한 파랑변형)

  • Cho, I.H.;Kim, H.J.
    • Journal of Korean Port Research
    • /
    • v.10 no.1
    • /
    • pp.53-61
    • /
    • 1996
  • This paper describes the effect of wave control using submerged flat plate by the numerical calculation and the hydraulic model test. The boundary element method is used to develop a numerical solution for the flow field caused by monochromatic oblique waves incident upon an infinitely long, sumerged flat plate situated in arbitrary water depth. The effect of wave blocking is examined according to the change of length, submerged depth of flat plate and incident angles. Numerical results show that longer length, shallower submergence of flat plate and larger incident angles enhance the effect of wave blocking. To validate numerical analysis method, hydraulic model test was conducted in 2-D wave flume with 60 cm metal sheet. Reflected waves are extracted from water surface elevation in front of the location of a submerged plate by least square method with 3 wave gages. From comparing experimental results with numerical results, efficiency of numerical analysis method by this study could be confirmed well within wide ranges of wave frequencies.

  • PDF

Composite Overlapping Meshes for the Solution of Radiation Forces on Submerged-Plate

  • Kong, Gil-Young;Lee, Sang-Min;Lee, Yun-Sok
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1203-1212
    • /
    • 2004
  • The purpose of this study is to predict and understand the hydrodynamic forces and their nonlinear behaviors of fluid motion around the submerged plate oscillating near a free surface. To achieve this objective, we have developed a composite grid method for the solution of a radiation problem. The domain is divided into two different grids; one is a moving grid system and the other is a fixed grid system. The moving grid is employed for the body fitted coordinate system and moves with the body. This numerical method is applied to calculation of radiation forces generated by the submerged plate oscillating near a free surface. In order to investigate the characteristics of the radiation forces, the forced heaving tests have been performed with several amplitudes and different submergences near a free surface. These experimental results are compared with the numerical ones obtained by the present method and a linear potential theory. As a result, we can confirm the accuracy of the present method. Finally, the effect of nonlinear and viscous damping has been evaluated on the hydrodynamic forces acting on the submerged plate.

Free Vibration Analysis of Perforated Plate Submerged in Fluid

  • Jhung, Myung-Jo;Jo, Jong-Chull;Jeong, Kyeong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1323-1338
    • /
    • 2006
  • An analytical method to estimate the coupled frequencies of the circular plate submerged in fluid is developed using the finite Fourier-Bessel series expansion and Rayleigh-Ritz method. To verify the validity of the analytical method developed, finite element method is used and the frequency comparisons between them are found to be in good agreement. For the perforated plate submerged in fluid, it is almost impossible to develop a finite element model due to the necessity of the fine meshing of the plate and the fluid at the same time. This necessitates the use of solid plate with equivalent material properties. Unfortunately the effective elastic constants suggested by the ASME code are found to be not valid for the modal analysis. Therefore in this study the equivalent material properties of perforated plate are suggested by performing several finite element analyses with respect to the ligament efficiencies.