DOI QR코드

DOI QR Code

Enhanced Electrochemical CO2 Reduction on Porous Au Electrodes with g-C3N4 Integration

g-C3N4 도입에 따른 다공성 Au 전극의 전기화학적 이산화탄소 환원 특성

  • Jiwon Heo (School of Chemical Engineering, Chonnam National University) ;
  • Chaewon Seong (School of Chemical Engineering, Chonnam National University) ;
  • Jun-Seok Ha (School of Chemical Engineering, Chonnam National University)
  • 허지원 (전남대학교 화학공학부) ;
  • 성채원 (전남대학교 화학공학부) ;
  • 하준석 (전남대학교 화학공학부)
  • Received : 2024.06.18
  • Accepted : 2024.06.30
  • Published : 2024.06.30

Abstract

The electrochemical reduction of carbon dioxide (CO2) is gaining attention as an effective method for converting CO2 into high-value carbon compounds. This paper reports a facile meth od for synth esizing and characterizing g-C3N4-modified porous Au (pAu) electrodes for electrochemical CO2 reduction using e-beam deposition and anodization techniques. The fabricated pAu@g-C3N4 electrode (@ -0.9 VRHE) demonstrated superior electrochemical performance compared to the pAu electrode. Both electrodes exhibited a Faradaic efficiency (FE) of 100% for CO production. The pAu@g-C3N4 electrode achieved a maximum CO production rate of 9.94 mg/s, which is up to 2.2 times higher than that of the pAu electrode. This study provides an economical and sustainable approach to addressing climate change caused by CO2 emissions and significantly contributes to the development of electrodes for electrochemical CO2 reduction.

이산화탄소 (CO2)의 전기화학적 환원은 CO2를 고부가가치 탄소화합물로 변환하는 효과적인 방법으로 주목받고 있다. 본 논문에서는 e-beam 증착법과 양극 산화법을 이용하여 전기화학적 CO2 환원용 g-C3N4가 도입된 다공성 Au(pAu) 전극을 합성하는 손쉬운 방법과 그 특성에 대해 보고한다. 제작된 pAu@g-C3N4 전극 (@ -0.9 VRHE)은 pAu 전극대비 더 우수한 전기화학적 성능을 보였다. CO2 환원 성능을 확인해 보았을 때, 두 전극 모두 CO 생성물에 대해 100%의 패러데이 효율 (FE)을 기록하였으며, pAu@g-C3N4 전극은 최대 9.94 mg/s의 CO 생산량을 나타내어 pAu 전극에 비해 최대 2.2배 많은 CO를 생산하였다. 본 연구는 CO2 배출로 인한 기후 변화에 대응하는 경제적이며 지속 가능한 방법을 제공할 뿐만 아니라, 전기화학적 CO2 환원용 전극 개발에 크게 기여할 것으로 예상된다.

Keywords

Acknowledgement

본 과제(결과물)는 2023년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업(2021RIS-002)과 2019년도 교육부의 재원으로 한국기초과학지원연구원 국가연구시설장비진흥센터의 지원을 받은 기초과학연구역량강화사업 핵심연구지원센터 조성 지원 과제에서 에너지 융복합 전문 핵심 연구지원센터를 조성하여(2019R1A6C1010024) 수행된 연구결과임.

References

  1. L. Talbi, I. Bozetine, S. A. Boussaa, K. Benfadel, D. Allam, N. Rahim, Y. O. Mohamed, M. Leitgeb, C. Torki, S. Hocine, F. Boudeffar, A. Manseri, and S. Kaci, "Photoelectrochemical properties of Cu2O / PANI / Si-based photocathodes for CO2 conversion", Emerging Materials Research, 12(1), 78-91 (2023).
  2. N. Abas, A. Kalair, and N. Khan, "Review of fossil fuels and future energy technologies", Futures, 69, 31-49 (2015).
  3. S. T. Guo, Z. Y. Tang, Y. W. Du, T. Liu, T. Ouyang, and Z. Q. Liu, "Chlorine anion stabilized Cu2O/ZnO photocathode for selective CO2 reduction to CH4", Appl. Catal. B Environ., 321, 122035 (2023).
  4. C. Zhu, A. Chen, J. Mao, G. Wu, S. Li, X. Dong, G. Li, Z. Jiang, Y. Song, W. Chen, and W. Wei, "Cu-Pd Bimetallic Gas Diffusion Electrodes for Electrochemical Reduction of CO2 to C2+ Products", Small Structures, 4(5), 1-9 (2023).
  5. C. Kim, A. Z. Weber, A. J. King, S. Aloni, F. M. Toma, and A. T. Bell, "Codesign of an integrated metal-insulator-semiconductor photocathode for photoelectrochemical reduction of CO2 to ethylene", Energy Environ. Sci., 16(7), 2968-2976 (2023).
  6. D. L. T. Nguyen, Y. Kim, Y. J. Hwang, and D. H. Won, "Progress in development of electrocatalyst for CO2 conversion to selective CO production", Carbon Energy, 2(1), 72-98 (2020).
  7. P. An, L. Wei, H. Li, B. Yang, K. Liu, J. Fu, H. Li, H. Liu, J. Hu, Y.R. Lu, H. Pan, T.S. Chan, N. Zhang, and M. Liu, "Enhancing CO2 reduction by suppressing hydrogen evolution with polytetrafluoroethylene protected copper nanoneedles", J. Mater. Chem. A, 8(31), 15936-15941 (2020).
  8. Y.-J. Zhang, V. Sethuraman, R. Michalsky, and A. A. Peterson, "Competition between CO2 Reduction and H2 Evolution on Transition-Metal Electrocatalysts", ACS Catal., 4(10), 3742-3748 (2014).
  9. R. Kungas, " Review-Electrochemical CO2 Reduction for CO Production: Comparison of Low- and High-Temperature Electrolysis Technologies", J. Electrochem. Soc., 167(4), 044508 (2020).
  10. X. Tan, H. Zhu, C. He, Z. Zhuang, K. Sun, C. Zhang, and C. Chen, "Customizing catalyst surface/interface structures for electrochemical CO2 reduction", Chem. Sci., 15(12), 4292-4312 (2024).
  11. X. Ning, Y. Li, J. Ming, Q. Wang, H. Wang, Y. Cao, F. Peng, Y. Yang, and H. Yu, "Electronic synergism of pyridinic- and graphitic-nitrogen on N-doped carbons for the oxygen reduction reaction", Chem. Sci., 10(6), 1589-1596 (2019).
  12. Y. Yang, J. Chen, Z. Mao, N. An, D. Wang, and B. D. Fahlman, "Ultrathin g-C3N4 nanosheets with an extended visible-light-responsive range for significant enhancement of photocatalysis", RSC Adv., 7(4), 2333-2341 (2017).
  13. X. Liu, X. Xu, H. Gan, M. Yu, and Y. Huang, "The Effect of Different g-C3N4 Precursor Nature on Its Structural Control and Photocatalytic Degradation Activity", Catalysts, 13(5), 848 (2023).
  14. B. O. Asimeng, I. Karadag, S. Iftekhar, Y. Xu, and J. Czernuszka, "XRD and IR revelation of a unique g-C3N4 phase with effects on collagen/hydroxyapatite bone scaffold pore geometry and stiffness", SN Appl. Sci., 2(8), 1417 (2020).
  15. A. Simaioforidou, Y. Georgiou, A. Bourlinos, and M. Louloudi, "Molecular Mn-catalysts grafted on graphitic carbon nitride (gCN): The behavior of gCN as support matrix in oxidation reactions", Polyhedron, 153, 41-50 (2018).
  16. M. KAVGACI, and H. ESKALEN, "Facile Synthesis and Characterization of gCN, gCN-Zn and gCN-Fe Binary Nanocomposite and Its Application as Photocatalyst for Methylene Blue Degradation", Sak. Univ. J. Sci., 27(3), 530-541 (2023).
  17. S. Peters, S. Peredkov, M. Neeb, W. Eberhardt, and M. AlHada, "Size-dependent XPS spectra of small supported Auclusters", Surf. Sci., 608, 129-134 (2013).
  18. A. Y. Klyushin, T. C. R. Rocha, M. Havecker, A. Knop-Gericke, and R. Schlogl, "A near ambient pressure XPS study of Au oxidation", Phys. Chem. Chem. Phys., 16(17), 7881-7886 (2014).
  19. M. Benedet, D. Barreca, G. A. Rizzi, C. Maccato, J.-L. Wree, A. Devi, and A. Gasparotto, "Fe2O3-graphitic carbon nitride nanocomposites analyzed by XPS", Surf. Sci. Spectra, 30(2), (2023).
  20. M. Jiang, M. Huang, J. Cong, Y. Yao, W. Sun, and B. Wang, "Enhanced visible-light photocatalytic activity of ZrO2/gCN composite by introducing nitrogen vacancies with H2 plasma treatment", J. Photochem. Photobiol. A Chem., 448, 115324 (2024).
  21. B. A. Mei, O. Munteshari, J. Lau, B. Dunn, and L. Pilon, "Physical Interpretations of Nyquist Plots for EDLC Electrodes and Devices", J. Phys. Chem. C, 122(1), 194-206 (2018).