DOI QR코드

DOI QR Code

Magnetic Induction Soldering Process for Mounting Electronic Components on Low Heat Resistance Substrate Materials

저 내열 기판소재 전자부품 실장을 위한 자기유도 솔더링

  • Youngdo Kim (Robot Intelligent Control System Engineering, Graduate School of Convergence Technology and Energy, Tech University of Korea) ;
  • Jungsik Choi (R&D Center, BS Technics) ;
  • Min-Su Kim (Micro-Joining Center, Korea Institute of Industrial Technology) ;
  • Dongjin Kim (Micro-Joining Center, Korea Institute of Industrial Technology) ;
  • Yong-Ho Ko (Micro-Joining Center, Korea Institute of Industrial Technology) ;
  • Myung-Jin Chung (Robot Intelligent Control System Engineering, Graduate School of Convergence Technology and Energy, Tech University of Korea)
  • 김영도 (한국공학대학교 융합기술에너지대학원 로봇지능제어시스템) ;
  • 최정식 ((주)비에스테크닉스 기술연구소) ;
  • 김민수 (한국생산기술연구원 마이크로조이닝센터) ;
  • 김동진 (한국생산기술연구원 마이크로조이닝센터) ;
  • 고용호 (한국생산기술연구원 마이크로조이닝센터) ;
  • 정명진 (한국공학대학교 융합기술에너지대학원 로봇지능제어시스템)
  • Received : 2024.06.14
  • Accepted : 2024.06.28
  • Published : 2024.06.30

Abstract

Due to the miniaturization and multifunctionality of electronic devices, a surface mount technology in the form of molded interconnect devices (MID), which directly forms electrodes and circuits on the plastic injection parts and mounts components and parts on them, is being introduced to overcome the limitations in the mounting area of electronic components. However, when using plastic injection parts with low thermal stability, there are difficulties in mounting components through the conventional reflow process. In this study, we developed a process that utilizes induction heating, which can selectively heat specific areas or materials, to melt solder and mount components without causing any thermal damage to the plastic. We designed the shape of an induction heating Cu coil that can concentrate the magnetic flux on the area to be heated, and verified the concentration of the magnetic flux and the degree of heating on the pad part through finite element method (FEM). LEDs, capacitors, resistors, and connectors were mounted on a polycarbonate substrate using induction heating to verify the mounting process, and their functionality was confirmed. We presented the applicability of a selective heating process through magnetic induction that can overcome the limitations of the reflow method.

최근 전자기기의 소형화, 다기능화 등으로 인한 전자부품 실장 영역의 한계치를 극복하고 플라스틱 사출물에 직접 회로를 인쇄하고 소자 및 부품을 실장하는 molded interconnect device (MID) 형태의 패키징 기법이 도입되고 있다. 다만 열 안정성이 낮은 플라스틱 사출물을 사용하는 경우, 종래의 리플로우 공정을 통한 부품 실장에 어려움이 있다. 본 연구에서는 특정 부위 혹은 소재만을 가열할 수 있는 유도가열 현상을 이용하여 플라스틱에 어떠한 열 데미지 없이 솔더를 용융시켜 실장하는 공정을 개발하였다. 가열하고자 하는 부위에 자속을 집중시킬 수 있는 유도가열용 Cu 코일 형상을 설계하고, 유한요소해석을 통해 패드부 자속 집중 및 가열 정도를 검증하였다. Polycarbonate 기판 위에 실장공정 검증을 위한 LED, capacitor, resistor, connector를 각각 유도가열을 통해 실장하고 작동여부를 확인하였다. 본 연구를 통해 리플로우 공법의 한계를 극복가능한 자기유도를 통한 선택적 가열 공정의 적용 가능성을 제시하였다.

Keywords

Acknowledgement

이 연구는 2022년 산업통상자원부 및 한국산업기술평가관리원(KEIT) 연구비 지원에 의하여 수행 되었습니다. (20018960, 글로벌 시장 진출을 위한 자동차 3차원 터치 일체형 감성조명 모듈용 자기유도 표면처리기술 개발)

References

  1. H. J. Ko, H. C. Kim, and H. Y. Yun, "Study on Fabrication of 3D MID Cruise Control Switch", J. Mechanical Science and Technology, 1796-1797 (2013).
  2. H. Y. Yun and H. C. Kim, "Basic Research For The 3DCD (3D Circuit Devices)", J. Korean Soc. Precis. Eng., 31(12), 1061-1066 (2014).
  3. H.-A. Yang, M. Wu, and W. Fan, "Localized induction heating solder bonding for wafer level MEMS packaging", J. Micromech. Microeng., 15(2), 394-399 (2005).
  4. Y.-S. Son, "Heat Transfer Analysis of Forced Convection-Infrared Reflow Soldering Process with Air Injection", J. Welding and Joining, 16(4), 98-108 (1998).
  5. J.-K. Choi, H.-S Bang, S. R. Rajesh, and H.-S. Bang, "Joining characteristics Sn-3.5Ag solder bump by induction heating", KWS, 47, 181-183 (2006).
  6. Y.-H. Lee, K.-Y. Lee, and T.-S. Oh, "COG(Chip On Glass)Bonding Technology for Flat Panel Display Using Induction Heating Body in AC Magnetic Field", J. Microelectronics & Packaging Society, 12(4), 315-321 (2005).
  7. J.-G. Kang, J.-H. Lee, and J.-G. Shin, "Numerical analysis of induction heating for the application of line heating", Journal of the Society of Naval Architects of Korea, 37(3), 110-121(2000).
  8. D. K. Cheng, "Field and Wave Electromagnetics", 2nd Ed., Addison Wesley, USA (1979).
  9. J. Jin, "The Finite Element Method in Electromagnetics", John Wiley and Sons (1979).
  10. W. H. Hayt, Jr. and J. A. Buck, "Engineering Electromagnetics", 5th Ed., The MaGraw-Hill Companies, USA (1990).
  11. S. Zinn, and S. L. Semiatin, "Elements of Induction Heating: Design, Control, and Applications", Electric Power Research Institute ; ASM International, Palo Alto, CA (1988).
  12. J.-K. Choi, K. Nam, J. K. Kim, H. Choi, and S.-S. Lee, "An Optimal Frequency Condition for An Induction Hardening for An Axle Shaft using Thermal-Electromagnetic Coupled Analysis", Trans. Korean Soc. Mech. Eng. A, 40(2), 207-212 (2016).
  13. T. L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. Dewitt, "Introduction to Heat Transfer", 2nd Ed., John Wiley and Sons, USA (1990).
  14. E.-Y. Yoon, S.-W. Kim, Y.-S. Yang, S.-J. Lee, and G.-H. Lee, "A study on PCB Failure prediction of forced convection reflow soldering process with Thermal-Structure coupled simulation", J. The Korean Society of Mechanical Engineers, 593-596 (2009).
  15. Z. Yin, F. Sun, and M. Guo, "The fast formation of Cu-Sn intermetallic compound in Cu/Sn/Cu system by induction heating process", Materials Letters, 215, 207-210 (2018).
  16. D. Seehase, C. Kohlen, A. Neiser, A. Novikov, and M. Nowottnick, "Selective Soldering on Printed Circuit Boards with Endogenous Induction Heat at Appropriate Susceptors", Periodica Polytechnica Electrical Engineering and Computer Science, 62(4), 172-180 (2018).
  17. M. Drienovsky, M. Palcut, P. Priputen, E. Cuninkova, O. Bosak, M. Kubliha, and L. R. Trnkova, "Properties of Sn-Ag-Cu Solder Joints Prepared by Induction Heating", Advances in Materials Science and Engineering, 1724095 (2020) .
  18. M. Li, H. Xu, S.-W. R. Lee, J. Kim, and D. Kim, "Eddy Current Induced Heating for the Solder Reflow of Area Array Packages", IEEE Transactions on Advanced Packaging, 31(2), 399-403 (2008).
  19. H. J. Han, J. P. Jung, B. Y. Ha, Y. E. Shin, J. Y. Park, and C. S. Kang, "Reflow Soldering Characteristics of Sn-3.5Ag Balls for BGA", Journal of Welding and Joining, 19(2), 39-44 (2001).