DOI QR코드

DOI QR Code

Mechanical Performance Study of Flexible Protection Tube for Submarine Cables

해저케이블용 유연보호튜브의 기계적 성능 연구

  • Kyeong Soo Ahn (Hwaseung Cooperation, Defense Business Team) ;
  • Yun Jae Kim (Gyeongsang National University, Graduate School of Mechanical System Engineering) ;
  • Jin-wook Choe (Korea Electrotechnology Research Institute, Power Cable Research Center) ;
  • Jinseok Lim (Korea Electrotechnology Research Institute, Power Cable Research Center) ;
  • Sung Woong Choi (Gyeongsang National University, Graduate School of Mechanical System Engineering)
  • 안경수 ;
  • 김윤재 ;
  • 최진욱 ;
  • 임진석 ;
  • 최성웅
  • Received : 2024.04.04
  • Accepted : 2024.04.14
  • Published : 2024.04.30

Abstract

Demand for submarine cable is increasing due to advances in submarine power transmission technology and submarine cable manufacturing technology. Submarine cable use various types of protective equipment to prevent problems such as high maintenance costs in the event of cable damage and power outages during maintenance periods. Among them, flexible protection tube is a representative protective equipment to protect cables and respond to external forces such as waves and current. The flexible protection tube is made of polyurethane 85A hyperelastic material, so the calculation of mechanical behavior is carried out using mechanical properties based on experimental results. In this study, a study was conducted to determine the bending performance and tensile performance of flexible protection tube through analytical methods. The physical properties obtained through the multiaxial tensile test of polyurethane 85A were used for the analysis. Bending and tensile performance were determined for the maximum bending moment standard of 15 kN·m and the tensile load standard of 50 kN. As a result, it was confirmed that when the maximum bending moment of 15 kN·m of the flexible protection tube occurred, the bending performance of the MBR was secured at 13 m and when a tensile load of 50 kN, it was applied the maximum vertical displacement was 968 mm, confirming that the tensile performance was secured.

해저케이블은 케이블의 손상 시 높은 유지 보수 비용과 문제점들을 해결하기 위해 다양한 종류의 보호기 자재를 사용한다. 특히 파랑 및 해류 등의 외력 요소 들로부터 케이블을 보호하기 위해 사용되는 대표적인 보호기자재로 유연보호튜브를 들 수 있다. 유연보호튜브는 폴리우레탄 85A 초 탄성 재료로 구성되어 있어 기계적 거동을 계산하기 위해 실험 결과를 기반으로 한 물성치를 이용한다. 본 연구에서는 유연 보호 튜브를 대상으로 해석적 방법을 사용하여 휨 성능과 인장 성능을 살펴보았다. 해석에 사용된 물성치는 폴리우레탄 85A의 다축인장 실험을 통해 확보된 물성 값을 이용하였다. 유연보호튜브는 최대 굽힘 모멘트 기준치인 15 kN·m와 인장하중의 기준치인 50 kN에 대해 휨 성능과 인장 성능을 분석하였다. 해석 결과 유연 보호 튜브의 최대 굽힘 모멘트가 15 kN·m일 때 MBR은 13 m로 휨 성능이 확보되었으며, 인장하중이 50 kN일 때 최대 수직 변위가 968 mm를 나타내 인장성능이 확보됨을 확인할 수 있었다.

Keywords

Acknowledgement

본 연구는 2021년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구임(20213000000020, 해상풍력단지 해저 전력망 구축을 위한 핵심기자재 및 평가 기술 개발)수행된 것이며, 지원에 대해 진심으로 감사드립니다.

References

  1. Kim, J.N., Go, G.R., and Park, S.G., "The Trends in Domestic and International Transmission Cable Technology," KEPCO Journal on Electric Power and Energy, Vol. 2, No. 3, 2016, pp. 361-364.
  2. Park, J.S., and Seo, J.K., "Development of a Unified Formula for Evaluating the Safe Working Loads of Ship Block Support Structures," Journal of Advanced Marine Engineering and Technology (JAMET), Vol. 46, No. 3, 2022, pp. 107-114.
  3. Jung, K.H., and Lee, J.H., "Experimental Study on Predicting the Corrosion behavior of Carbon Steel in Various Corrosive Environments Using Artificial Neural Networks," Journal of Advanced Marine Engineering and Technology (JAMET), Vol. 47, No. 6, 2023, pp. 317-324.
  4. Yang, J., Lee, J.Y., and Kim, Y., "Effects of Substrate Roughness on Corrosion Resistance of Electrodeposited Calcareous Films," Journal of Advanced Marine Engineering and Technology (JAMET), Vol. 47, No. 6, 2023, pp. 331-335.
  5. Yushuang, W., "Overview of Development of Submarine Cable Transmission Project all over the World," Science Technology and Industry, Vol. 5, No. 4, 2012, pp. 45-48.
  6. Ahn, S.H., and Kim, D.S., "Submarine Cable Installation and Protection Methods According as Characteristics of Ocean Environment," Journal of the Korean Society of Marine Environment & Safety, Vol. 15, No. 1, 2009, pp. 25-32.
  7. Jo, J.S., Kim, J.S., and Choi, S.J., "Evaluation of Impact Resistance and Material Properties of Eco-friendly Buoys with Biodegradable Plastic Materials," Journal of Advanced Marine Engineering and Technology (JAMET), Vol. 46, No. 5, 2022, pp. 230-236.
  8. Park, S.W., Lee, H.H., Kim, J.H., and Seo, J.K., "An Experimental Study on the Effect of Plastic Sheet Thickness on Gas Explosion Load Profiles Generated in a Vented Cylindrical Chamber," Journal of Advanced Marine Engineering and Technology (JAMET), Vol. 47, No. 1, 2023, pp. 42-51.
  9. Korea Standard. KS M 3824, "Testing Methods for Thermoplastic Polyurethane Elastomers", Korean Standard: Seoul, Korea, 2008.
  10. Kim, B., Lee, S.B., Lee, J., Cho, S., Park, H., Yeom, S., and Park, S.H., "A Comparison among Neo-Hookean Model, MooneyRivlin Model, and Ogden Model for Chloroprene Rubber," International Journal of Precision Engineering and Manufacturing, Vol. 13, 2012, pp. 759-764.
  11. Tekmar Energy, "Market Leading Provider of Subsea Protection Systems", UK, 2024.
  12. Gorgulu, I., Carbone, G., and Dede, M.I.C., "Time Efficient Stiffness Model Computation for a Parallel Haptic Mechanism via the Virtual Joint Method," Mechanism and Machine Theory, Vol. 143, 2020, 103614.