• Title/Summary/Keyword: Flexural performance

Search Result 1,208, Processing Time 0.035 seconds

Flexural Performance of Polypropylene Fiber Reinforced EVA Concrete (폴리프로필렌 섬유보강 EVA 콘크리트의 휨 성능)

  • Sung, Chan Yong;Nam, Ki Sung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.2
    • /
    • pp.83-90
    • /
    • 2016
  • This study was performed to evaluate the effective analysis of flexural performance for polypropylene fiber (PF) reinforced EVA concrete that can be used in marine bridge, tunnel and agricultural structures under flexural load. The control design was applied in ready mixed concrete using 10 % fly ash of total binder weight used in batch plant. On the basis of the control mix design, there was designed mix types that contained PF ranged from 0 % to 0.5 % by volume ratio into two mix types of using 0 % and 5.0 % EVA contents of total binder weight. Before evaluating the flexural performance, we tested compressive strength and flexural strength to evaluate whether polypropylene fiber reinforced concrete could be used or not in site. The method of flexural performance evaluation was applied by ASTM C 1609. These results showed the maximum compressive strength and flexural strength was measured at each E5P1 and E5P2. Concrete reinforced with PF exhibited deflection-softening behavior. In the concrete reinforced with 0.4 % PF contents and containing 5.0 % EVA, the flexural performance was the best.

Evaluation on Flexural Performance of One-Way Hollow Slabs according to the Shear Reinforcement (전단보강에 따른 일방향 중공슬래브의 휨 성능 평가)

  • Yu, Yu-Jin;Seok, Keun-Young;Kim, Gee-Cheol;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.2
    • /
    • pp.79-86
    • /
    • 2014
  • The purpose of this study is intended to determine the validity of shear reinforcement by evaluating flexural performance in the hollow slab. The hollow slab is relatively light and second moment of inertia is large. Due to these characteristics, it can be used to slab system efficiently. Therefore the prediction of the structural behaviors is very important because of decrease of shear and flexural strength which is caused by hollow section of slab interior. In this study, the flexural test were performed to analyze the flexural capacity of the hollow slab w/ or w/o shear reinforcement. A total of six full scale specimens were tested. These specimens have three cases of reinforcing bar ratio, 0.009, 0.018 and 0.024. To verify the flexural behavior such as ultimate load, load-deflection and crack pattern, the flexural experiment were tested by using loading frame. Experimental results have shown that the flexural behavior are depend on the reinforcing bar ratio. Also the hollow slab with shear reinforcement have shown flexural behavior. Therefore, it is appropriate that the hollow slab is reinforced by shear reinforcement to improve the flexural performance of the hollow slab.

An Experimental Study on Moisture Sensitivity of High Performance Cellulose Fiber Reinforced Cement Composites (고성능 셀룰로우스 섬유보강 시멘트 복합체의 수분영향에 관한 연구)

  • 원종필;문제길
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.5
    • /
    • pp.163-170
    • /
    • 1996
  • Cellulose fibers, being fairly strong and stiff as well as cheap and plentiful with low energy demand during manufacture, are strong contenders for the reinforcement of cement-based materials. Cellulose fiber-cement composites, generally manufactured by slurry-dewatering procedure, can find applications in the production of flat and corrugated cement sheets and many other thin-sheet cement products. This paper presents the results of an experimental study concerned with the effects of fiber content and moisture conditions on the flexural performance of these composites. An effort was also made to study the effect of pozzolanic admixtures on the flexural performance in different moisture conditions. The test results obtained were analyzed statistically using the analysis of variance in order to derive reliable conclusions. The results generated in this study were indicative of significant effects of fiber content and moisture condition of flexural performance. There is a tendency in flexural strength to increase in increase in fiber content up to 8%: flexural toughness values continue to increase even at higher fiber contents. Moisture content has a significant effect on the flexural performance. There is a tendency in flexural strength to decrease and flexural toughness to increase with increasing moisture content Composites incorporating pozzolans showed an increase in the flexural strength while slightly reducing the flexural toughness and were sensitive to variations in moisture content.

An Experimental Study on Flexural Performance of RC Beams Reinforced With Hybrid Prefabricated Retrofit Method (하이브리드 조립형 보강 기법을 적용한 철근콘크리트 보의 휨 성능 평가에 관한 실험적 연구)

  • Moon, Sang Pil;Lee, Sung Ho;Lee, Young Hak;Kim, Min Sook
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.131-139
    • /
    • 2020
  • In this paper, the hybrid prefabricated retrofit method is suggested and examined. Six specimens were manufactured in order to evaluate their flexural performance of RC beams. Test parameters include the added beam depth, the thickness of bottom plate, the number of the steel plate with openings. The effects of these parameters on the flexural performance of reinforced concrete beams were examined. The load-deflection behavior and modes of cracks are presented from the test results. At the test result, the flexural capacity and the ductility of the hybrid prefabricated retrofit method was increased satbly. Also, comparing the flexural performance of RC beam and retrofitted RC beams, it was increased that the flexural strength is about 3.3 times, the ductility is about 2.55 times, and energy dissipation capacity is about 7.34 times.

Effective CFRP retrofit strategy for flexural deficient RC beams

  • Banjara, Nawal Kishor;Ramanjaneyulu, K.
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.163-175
    • /
    • 2019
  • Structural deterioration arises due to aging, environmental effects, deficiencies during design and construction phase, and overloading. Experimental and numerical investigations are carried out in this study to evaluate the performance of control and flexural deficient reinforced concrete (RC) beams under monotonic loading. Three levels of flexural deficiency are considered in this study. After confirming load carrying capacities of control and flexural deficient beams, the flexural deficient RC beams are strengthened with carbon fibre reinforced polymer (CFRP) fabric. CFRP strengthened RC beams are tested under monotonic loading and compared with the performance of control specimen. Further, non-linear finite element analyses are also carried out to evaluate the flexural performance of control, deficient and CFRP strengthened flexural deficient RC beams. There is good correlation between results of experimental and numerical investigations. Numerical approach presented in this study can be adopted for assessing the adequacy of CFRP retrofit measure.

Effects of Specialty Cellulose Fibers on Improvement of Flexural Performance and Control of Cracking of Concrete (콘크리트의 휨성능 증진 및 균열제어에 대한 특수 가공된 셀룰로오스섬유의 효과)

  • 원종필;박찬기
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.2
    • /
    • pp.89-98
    • /
    • 2000
  • The mechanical properties of specialty cellulose fiber reinforced concrete and the contribution of specialty cellulose fiber to drying shrinkage crack reduction potential of concrete and theirs evaluation are presented in this paper. The effects of differing fiber volume fraction(0.03%, 0.06%, 0.08%, 0.1%, 0.15%, 0.2%) were studied. The results of tests of the specialty cellulose fiber reinforced concrete were compared with plain and polypropylene fiber reinforced concrete. Flexural performance(flexural strength and flexural toughness) test results indicated that specialty cellulose fiber reinforcement showed an ability to increase the flexural performance of normal- and high- strength concrete(as compared to plain and polypropylene fiber reinforced concrete). Optimum specialty cellulose fiber reinforced concrete were obtianed using 0.08% fiber volume fraction. Drying shrinkage cracking test results confirmed specialty cellulose fibers are effective in reducing the drying shrinkage cracking of normal and high-strength concrete(as compared to popylene fiber reinforced concrete).

Flexural Performance of Cement Treated Clay-Sand Mixtures Reinforced with Synthetic Fibers (합성섬유로 보강된 시멘트-점토-모래 혼합토의 휨성능 평가에 관한 연구)

  • Jung, Du-Hwoe;Cho, Baik-Soon;Lee, Yong-Yun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.1
    • /
    • pp.19-29
    • /
    • 2017
  • The effects of synthetic fibers, cement content, and sand content on the flexural performance of cement-clay-sand mixtures has been evaluated through a flexural performance test with a third-point loading. Beam specimens for the flexural performance test were fabricated with a various amount of cement, sand, and synthetic fibers. Two types of fibers, PVA (Polyvinyl alcohol) and PP (Polypropylene) fibers, were employed in the test. The test results have exhibited that the factors considered in the test have significant effects on the flexural performance of the mixtures in several aspects. The flexural performance of the mixtures has been improved if the mixtures were reinforced with synthetic fibers. The flexural strength and the flexural toughness of the mixtures has been increased as the fiber content was increased. A multiple linear regression analysis has been performed to evaluate the effect of fiber content, cement dosage, and sand content on the flexural performance of the mixtures in terms of flexural strength and flexural toughness. Cement content and sand content were estimated as important factors to have an influence on the first-crack strength and the peak strength whereas the fiber content has the most significant influence on the post-crack behavior. The first-crack strength and the ultimate strength were increased as the cement content and the sand content were increased. As the fiber content was increased, the flexural toughness was increased.

A Study on the Evaluation of Flexural Capacity and Design Equation of FRP Reinforcement-Concrete Beams (FRP보강근-콘크리트보의 휨성능과 휨설계식의 평가 연구)

  • Ko, Dong Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.1
    • /
    • pp.59-66
    • /
    • 2022
  • In this paper, the flexural capacity equation of FRP-bar reinforced concrete beams was verified by comparing the experimental results and flexural capacity obtained according to the ACI procedure. And, also the economic feasibility of FRP-bar reinforced concrete beams was analyzed by comparing nominal moment capacity of beams. The results of analysis were as follows, 1) GFRP concrete beams have lower flexural performance than reinforced concrete beams, whereas CFRP concrete beams have similar flexural performance to reinforced concrete beams under the same reinforcement ratio 2) Although the design moment increased as the compressive strength of concrete increased, the flexural performance of GFRP reinforced concrete beams was found to be lower than the reinforced concrete beams for all reinforcement ratios.

Flexural Performance of Specialty Cellulose Fiber Reinforced Concrete (특수 가동된 셀룰로오스섬유보강 콘크리트의 휨성능)

  • 원종필;박찬기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.311-314
    • /
    • 1999
  • This study is aim to evaluate of the flexural performance of specialty cellulose fiber reinforced concrete. Flexural test is proceeded by third-point loading method and the size of the test specimens is 15$\times$15$\times$55cm. The rate of loading was 0.006mm/min. The effects of differing fiber volume fraction(0.08%, 0.1%, 0.15%) were studied. The results of test on the specialty cellulose fiber reinforced concrete were compared with plain and polypropylene fiber reinforced concrete. Results indicated that specially cellulose fiber reinforcement showed an improvement of flexural performance.

  • PDF

Evaluation of Flexural Performance of Reinforced Concrete Shear Walls According to Flexural Retrofit by Wall End Excavating (단부 파쇄형 휨 보강에 따른 철근콘크리트 전단벽 휨 성능 평가)

  • Cho, Ui-Jin;Kim, Su-Yong;Bae, Baek-Il;Choi, Chang-Sik
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.4
    • /
    • pp.123-133
    • /
    • 2020
  • The purpose of this study is to analyze the method of retrofitting flexural strength and the flexural performance of retrofitted shear walls. There are various ways to reinforce the flexural strength of reinforced concrete shear wall structural systems that have already been built, in the case of that, the external force is increased, and the internal force is insufficient. However, there are various problems, such as excessive flexural stiffness after reinforcement and increasing the thickness and length of the wall. We have developed a retrofit method to solve these problems. The wall end is excavated to place the required vertical rebars, and concrete is poured after placing rebars. This is the same concept as creating wall end boundary elements later on. We also studied the anchorage method of reinforcement and the interaction method between the retrofitting end and the existing wall. The flexural test results for the reinforced concrete shear wall using the studied retrofit method can be predicted according to the sectional analysis and FEM analysis, and there are differences in the plastic hinge length, crack propagation, stiffness degradation and energy dissipation due to the bending depending on the vertical rebar ratio of wall end.