DOI QR코드

DOI QR Code

Effect of Iron Ore Tailings Replacing Porous Basalt on Properties of Cement Stabilized Macadam

  • Qifang Ren (School of Materials Science and Chemical Engineering, Anhui Jianzhu University) ;
  • Fan Bu (School of Materials Science and Chemical Engineering, Anhui Jianzhu University) ;
  • Qinglin Huang (School of Materials Science and Chemical Engineering, Anhui Jianzhu University) ;
  • Haijun Yin (Beijing Rechsand Sand Industry Casting Material Co., Ltd.) ;
  • Yuelei Zhu (School of Materials Science and Chemical Engineering, Anhui Jianzhu University) ;
  • Rui Ma (School of Materials Science and Chemical Engineering, Anhui Jianzhu University) ;
  • Yi Ding (School of Materials Science and Chemical Engineering, Anhui Jianzhu University) ;
  • Libing Zhang (Anhui Road and Bridge Engineering Group Co., Ltd.) ;
  • Jingchun Li (Anhui Road and Bridge Engineering Group Co., Ltd.) ;
  • Lin Ju (Anhui Road and Bridge Engineering Group Co., Ltd.) ;
  • Yanyan Wang (Anhui Institute of Building Research and Design) ;
  • Wei Xu (Anhui Construction & Building Materials Technology Group Co., Ltd.) ;
  • Haixia Ji (School of Materials Science and Chemical Engineering, Anhui Jianzhu University) ;
  • Won-Chun Oh (Department of Advanced Materials Science and Engineering, Hanseo University)
  • Received : 2024.01.22
  • Accepted : 2024.06.07
  • Published : 2024.06.27

Abstract

In this paper, iron ore tailings (IOT) were separated from the tailings field and used to prepare cement stabilized macadam (CSM) with porous basalt aggregate. First, the basic properties of the raw materials were studied. Porous basalt was replaced by IOT at ratios of 0, 20 %, 40 %, 60 %, 80 %, and 100 % as fine aggregate to prepare CSM, and the effects of different cement dosage (4 %, 5 %, 6 %) on CSM performance were also investigated. CSM's durability and mechanical performance with ages of 7 d, 28 d, and 90 d were studied with the unconfined compression strength test, splitting tensile strength test, compressive modulus test and freeze-thaw test, respectively. The changes in Ca2+ content in CSM of different ages and different IOT ratios were analyzed by the ethylene diamine tetraacetic acid (EDTA) titration method, and the micro-morphology of CSM with different ages and different IOT replaced ratio were observed by scanning electron microscopy (SEM). It was found that with the same cement dosage, the strengths of the IOT-replaced CSM were weaker than that of the porous basalt aggregate at early stage, and the strength was highest at the replaced ratio of 60 %. With a cement dosage of 4 %, the unconfined compressive strength of CSM without IOT was increased by 6.78 % at ages from 28 d to 90 d, while the splitting tensile strength increased by 7.89 %. However, once the IOT replaced ratio reached 100 %, the values increased by about 76.24 % and 17.78 %, which was better than 0 % IOT. The CSM-IOT performed better than the porous basalt CSM at 90 d age. This means IOT can replace porous basalt fine aggregate as a pavement base.

Keywords

Acknowledgement

This work was financially supported by The University Synergy Innovation Program of Anhui Province (GXXT-2022-083, GXXT-2023-019), Academic Funding Program for top discipline (major) talents in universities (No. gxbjZD 2022029), Major Science and Technology Project of Anhui Province (No. 202203c08020001), Excellent Scientific Research and Innovation Team in Colleges and Universities of Anhui Province (2022AH010017), and Anhui Province 15th batch "115" industrial innovation team.

References

  1. P. H. Wen, C. H. Wang, L. Song, L. L. Niu and H. Y. Chen, Sustainability, 13, 11610 (2021). 
  2. T. Meng, S. S. Lian, K. J. Ying and H. M. Yu, Rev. Adv. Mater. Sci., 60, 490 (2021). 
  3. C. Berthelot, D. Podborochynski, B. Marjerison and T. Saarenketo, Can. J. Civ. Eng., 37, 1613 (2010). 
  4. A. J. Puppala, S. Saride and R. Williammee, J. Mater. Civ. Eng., 24, 418 (2012). 
  5. G. P. Qian, T. Huang and S. Y. Bai, J. Mater. Civ. Eng., 23, 1575 (2011). 
  6. W. Tabyang, C. Suksiripattanapong, C. Phetchuay, C. Laksanakit and N. Chusilp, Road Mater. Pavement Des., 23, 2178 (2021). 
  7. S. W. Townsend, C. J. Spreadbury, S. J. Laux, C. C. Ferraro, P. E. R. Kari and T. G. Townsend, J. Environ. Eng., 146, 0402 (2020). 
  8. S. H. Liang, J. T. Chen, M. X. Guo, D. L. Feng, L. Liu and T. Qi, Waste Manage., 105, 425 (2020). 
  9. L. A. Guerrero, G. Maas and W. Hogland, Waste Manage., 33, 220 (2013). 
  10. O. R. Carmignano, S. S. Vieira, A. P. C. Teixeira, F. S. Lameiras, P. R. G. Brandao and R. M. Lago, J. Braz. Chem. Soc., 32, 1895 (2021). 
  11. J. S. Zhao, K. Ni, Y. P. Su and Y. X. Shi, Constr. Build. Mater., 286, 122968 (2021). 
  12. B. C. Gayana and K. R. Chandar, Adv. Concr. Constr., 6, 221 (2018). 
  13. J. H. Deng, X. A. Ning, J. H. Shen, W. X. Ou, J. Y. Chen, G. Q. Qiu, Y. Wang and Y. He, J. Environ. Manage., 317, 115435 (2022). 
  14. N. Zhang, B. W. Tang and X. M. Liu, Constr. Build. Mater., 288, 123022 (2021). 
  15. C. Li, H. H. Sun, Z. L. Yi and L. T. Li, J. Hazard. Mater., 174, 78 (2010). 
  16. J. L. B. Galvao, H. D. Andrade, G. J. Brigolini, R. A. F. Peixoto and J. C. Mendes, J. Cleaner Prod., 200, 412 (2018). 
  17. Y. Liu, W. R. Hao, W. He, X. Meng, Y. L. Shen, T. Du and H. Wang, Coatings, 12, 95 (2022). 
  18. C. Li, N. Zhang, J. C. Zhang, S. Song and Y. H. Zhang, Materials, 15, 112 (2021). 
  19. J. S. Zhao, Y. P. Su, Y. X. Shi, Q. X. Wang and K. Ni, Struct. Concr., 23, 423 (2022). 
  20. F. H. Han, S. M. Song, J. H. Liu and S. Huang, Powder Technol., 345, 292 (2019). 
  21. B. G. Ma, L. X. Cai, X. G. Li and S. W. Jian, J. Cleaner Prod., 127, 162 (2016). 
  22. W. C. Fontes, J. C. Mendes, S. N. Da Silva and R. A. F. Peixoto, Constr. Build. Mater., 112, 988 (2016). 
  23. L. X. Cai, B. G. Ma, X. G. Li, Y. Lv, Z. L. Liu and S. W. Jian, Constr. Build. Mater., 128, 361 (2016). 
  24. N. Garcia-Troncoso, H. Baykara, M. H. Cornejo, A. Riofrio, M. Tinoco-Hidalgo and J. Flores-Rada, Case Stud. Constr. Mater., 16, e01031 (2022). 
  25. M. J. Yang, J. H. Sun, C. Y. Dun, Y. J. Duan and Z. L. Meng, Constr. Build. Mater., 265, 120760 (2020). 
  26. S. Abd Latif, M. S. A. Rahman and O. Sikiru, Rom. J. Mater., 47, 336 (2017). 
  27. S. Zhao, J. Fan and W. Sun, Constr. Build. Mater., 50, 540 (2014). 
  28. W. Li, L. Lang, Z. Y. Lin, Z. H. Wang and F. G. Zhang, Constr. Build. Mater., 134, 540 (2017). 
  29. J. A. Wang, A. C. Fayish, B. Hoffheins and M. L. McCahan, Transp. Geotech., 30, 100618 (2021). 
  30. A. H. Farhan, A. R. Dawson and N. H. Thom, Mater. Des., 97, 98 (2016). 
  31. D. Singh and A. Kumar, J. Rock Mech. Geotech. Eng., 9, 370 (2017). 
  32. Y. X. Li, S. B. Ma, G. Chen and S. Wang, Int. J. Pavement Eng., 24, 2011278 (2021). 
  33. J. Zhang, C. Li, L. Ding and J. Li, Constr. Build. Mater., 296, 123596 (2021). 
  34. X. Lan, X. Zhang, Z. Hao and Y. Wang, Case Stud. Constr. Mater., 16, e00984 (2022). 
  35. K. Yan, G. Li, L. You, Y. Zhou and S. Wu, Constr. Build. Mater., 233, 117326 (2020). 
  36. K. Yan, H. Sun, F. Gao, D. Ge and L. You, J. Cleaner Prod., 244, 118750 (2020). 
  37. C. F. Chu, Y. F. Deng, A. N. Zhou, Q. Feng, H. Ye and F. S. Zha, Constr. Build. Mater., 189, 849 (2018). 
  38. L. A. D. Bastos, G. C. Silva, J. C. Mendes and R. A. F. Peixoto, J. Mater. Civ. Eng., 28, 04016102 (2016). 
  39. Ministry of Transport PR China. Test methods of materials stabilized with inorganic binders for highway engineering (JTG.E51-2009). Retrieved October 15, 2009 from https://xxgk.mot.gov.cn/2020/jigou/glj/202403/t20240301_4032012.html 
  40. Ministry of Transport PR China. Technical guidelines for construction of highway roadbases (JTG/T.F20-2015). Retrieved July 30, 2015 from https://xxgk.mot.gov.cn/2020/jigou/glj/202006/t20200623_3312274.html 
  41. Y. Cheng, F. Huang, W. Li, R. Liu, G. Li and J. Wei, Constr. Build. Mater., 118, 164 (2016). 
  42. J. Han, C. Fu, S. Liu, H. Li, L. Wang, H. Sun, H. Wu and A. Gloria, Adv. Mater. Sci. Eng., 2022, 8028009 (2022). 
  43. R. Wu, Y. Zhang, G. Zhang and S. An, J. Build. Eng., 57, 104954 (2022). 
  44. M. Gao, J. Dai, H. Jing, W. Ye and T. Sesay, J. Build. Eng., 403, 133065 (2023). 
  45. B. Liu, H. Meng, G. Pan and D. Li, Adv. Cem. Res., 35, 258 (2022). 
  46. J. Liu, S. An and Y. Zhang, Cem. Concr. Compos., 140, 105061 (2023).