DOI QR코드

DOI QR Code

방해석과 아라고나이트를 이용한 인공산성배수의 중금속 제거 효율 평가

Evaluation of Heavy Metal Removal Efficiency in Artificial Acidic Drainage Using Calcite and Aragonite

  • 송병철 (안동대학교 지구환경과학과) ;
  • 김영훈 (안동대학교 환경공학과) ;
  • 김정진 (안동대학교 지구환경과학과)
  • Byeong Cheol Song (Department of Earth and Environmental Sciences, Andong National University) ;
  • Young Hun Kim (Department of Environmental Engineering, Andong National University) ;
  • Jeong Jin Kim (Department of Earth and Environmental Sciences, Andong National University)
  • 투고 : 2024.06.18
  • 심사 : 2024.06.27
  • 발행 : 2024.06.28

초록

탄산염광물인 방해석과 아라고나이트는 화학식 CaCO3인 동질이상광물이다. 본 연구에서 사용된 pH 상승용 중화제는 자연산 석회암과 아라고나이트, 방해석으로 구성된 가리비(scallop)와 아라고나이트로 구성된 바지락(clam) 패각이다. 실험에 사용한 인공산성배수의 중금속은 Cd, Cu, Fe, Mn, Zn이다. 실험결과에 의하면, pH상승 효과는 방해석과 아라고나트계열 모두 자연산 광석보다 패각이 더 높다. Cd 제거에 가장 적당한 매질은 자연산 방해석과 가리비(방해석)이며 Cu와 Fe는 4개 시료 모두 95% 이상의 높은 효율을 나타내었다. Zn은 아라고나이트와 바지락(아라고나이트)이 효율이 높으며, Mn은 4개의 매질 모두 50% 이하로 낮다. 중금속 제거 효율은 Mn을 제외하고 90% 이상이며 Fe > Cu > Cd > Zn > Mn 순이다.

Calcite and aragonite are polymorphs with the chemical formula CaCO3. In this study, natural limestone and aragonite, as well as scallop and clam shells composed of calcite and aragonite, were used as the pH-raising neutralizing agents for model solutions containing various heavy metals such as Cd, Cu, Fe, Mn, and Zn to simulate acidic drainage. According to the experimental results, pH-raising effect is higher in the shell materials compared to natural ores for both the calcite and aragonite types. Natural calcite and scallop shells are found to be the most suitable media for Cd removal, while over 95% efficiency for Cu and Fe removal was observed in all four media. Zn removal efficiency is higher in aragonite and clam shells, while Mn removal efficiency is relatively low, to be below 50%, for all four media. Overall, the heavy metal removal efficiency, except for Mn, was over 90%, in the order of Fe > Cu > Cd > Zn > Mn.

키워드

과제정보

이 논문은 안동대학교 기본연구지원사업에 의하여 연구되었으며 이에 감사드립니다.

참고문헌

  1. Abad, I. (2007) Physical meaning and applications of the illite Kubler index: measuring reaction progress in low-grade metamorphism. In Nieto, F., and Jimenez-Millan, J. (Eds.), Diagenesis and Low-Temperature Metamorphism. Theory, Methods and Regional Aspects.
  2. Alpers, C.N., Blowes, D.W., Nordstrom, D.K., and Jambor, J.L. (1994) Secondary minerals and acid mine-water chemistry. In Jambor, J.L. and Blowes, D.W. (Eds.), Mineralogical Association of Canada, v.22, p.249-270.
  3. Barley, W., Hutton, T.C., Brown, M.M.E., Cusworth, J.E., and Hamilton, T.J. (2005) Trends in biomass and metal sequestration associated with reeds and algae at Wheal Jane Biorem pilot passive treatment plant. Sci. Total Environ., v.345, p.279-286. doi: 10.1016/j.scitotenv.2005.04.002
  4. Bigham, J.M., Carlson, L.E., and Murad, E. (1994) Schwertmannite, a new iron oxyhydroxy-sulfate from Pyhasalmi, Finland, and other localities. Miner. Mag., v.58, p.641-648. doi: 10.1180/minmag.1994.058.393.14
  5. Cravotta, C.A. (2003) Size and performance of anoxic limestone drains to neutralize acidic mine drainage. J. Environ. Qual., v.32, p.1277-1289. doi: 10.2134/jeq2003.1277
  6. Diem, D. and Stumm, W. (1984). Is dissolved Mn2+ being oxidized by O2 in absence of Mn-bacteria or surface catalysts? Geochimica et Cosmochimica Acta, v.48(7), p.1571-1573. doi: 10.1016/0016-7037(84)90413-7
  7. Eberl, D.D. and Velde, B. (1989) Beyond the Kubler index. Clay Minerals, v.24(4), p.571-577. doi: 10.1180/claymin.1989.024.4.01
  8. Garcia, S.A. and Alvarez, A.E. (2002) Sorption of Zn, Cd, and Cr on calcite: Application to purification of industrial wastewaters. Minerals Engineering, v.15(8), p.539-547. doi: 10.1016/S0892-6875(02)00072-9
  9. Genty, T., Bussiere, B., Potvin, R., Benzaazoua, M., and Zagury, G. J. (2012) Dissolution of calcitic marble and dolomitic rock in high iron concentrated acid mine drainage: Application to anoxic limestone drains. Environ. Earth Sci., v.66, p.2387-2401. doi: 10.1007/s12665-011-1464-3
  10. Godelitsas, A., Astilleros, J.M., Hallam, K., Harissopoulos, S., and Putnis, A. (2003) Interaction of calcium carbonates with lead in aqueous solutions. Environmental Science and Technology, v.37(15), p.3351-3360. doi: 10.1021/es020238i
  11. Gutierrez-Leon, J., Cama, J., Queralt, I., Jimenez, J.A., and Soler, J.M. (2021) Effect of acid mine drainage (AMD) on the alteration of hydrated Portland cement and calcareous sandstone. Applied Geochemistry, 126. doi: 10.1016/j.apgeochem.2021.104900
  12. Habte, L., Shiferaw, N., Khan, M., Thriveni, T., and Ahn, J.W. (2020) Sorption of Cd2+ and Pb2+ on aragonite synthesized from eggshell. Sustainability, v.12, 1174. doi: 10.3390/su12031174
  13. Hales, B., Feely, R.A., Peterson, W.T., and Chavez, F.P. (2005) Aragonite and calcite saturation state of the Pacific Northwest coastal ocean. Marine Chemistry, v.93(1-2), p.79-93.
  14. Jung, M.C. (2005) Remediation of acid mine drainage from an abandoned coal mine using steel mill slag, cow manure, and limestone. J. Soil Groundwater Environ., v.10(3), p.16-23.
  15. Kang, H., Park, S.M., Jang, Y.D., and Kim, J.J. (2008) Studies for neutralization treatment of acid mine drainage from abandoned mine. Econ. Environ. Geol., v.41(1), p.33-45.
  16. Kang, K., Park, S.J., Shin, W.S., Um, B.H., and Kim, Y.K. (2012) Removal of synthetic heavy metal (Cr6+, Cu2+, As3+, Pb2+) from water using red mud and limestone. Journal of Korean Society of Environmental Engineers, v.34(8), p.566-573. doi: 10.4491/KSEE.2012.34.8.566
  17. Karthikeyan, K.G., Elliott, H.A., and Cannon, F.S. (1996) Enhanced metal removal from wastewater by coagulant addition. Proc. 50th Purdue Industrial Waste Conf., v.50, p.259-267.
  18. Kim, G.M., Hur, W., and Baek, H.J. (2008) Treatment of acid mine drainage using immobilized beads carrying sulfate reducing bacteria. Econ. Environ. Geol., v.41(1), p.57-62.
  19. Kim, T.Y., Kim, M.S., Min, B.J., Park, K.M., Cho, S.Y., and Kim, S.J. (2008) Removal of heavy metal ions from aqueous solution using oyster shell. Journal of Engineering and Technology, v.1(2), p.395-400.
  20. Kim, Y.S., Lim, E.O., and Seo, S.G. (2017) The calcination temperature effect and characteristics of the cockle shell. Journal of Korean Society of Environmental Technology, v.18(4), p.339-345.
  21. KOMIR (2018) Yearbook of MIRECO Statistics. Lee Cheong Ryong (Ed.). Mine Reclamation Corp. pp. 354.
  22. Kubler, B. (1967) The crystallinity of illite and the very upper zones of metamorphism. Etages Tectoniques (Colloque de Neuchatel), 105-121.
  23. Lee, J.H. and Jeung, J.H. (2016) Manufacture of adsorbent with oyster shell waste and adsorption characteristics of mine wastewater. Journal of the Korean Society for Environmental Technology, v.17(2), p.114-122.
  24. Lee, M.H. and Jeong, T.S. (1997) A study on the water treatment using shell waste. Journal of the Korean Institute of Resources Recycling, v.6(3), p.28-35.
  25. Lee, M.H., Kim, Y.H., and Kim, J.J. (2019) Characteristics of Removal and Precipitation of Heavy Metals with pH change of Artificial Acid Mine Drainage, Econ. Environ. Geol., v.52(6), p.529-539. doi: 10.9719/EEG.2019.52.6.529
  26. Lin, P.Y., Wyu, H.M., Hsieh, S.L., Li, J.S., Dong, H., Chen, C.W., and Hsieh, S. (2020) Preparation of vaterite calcium carbonate granules from discarded oyster shells as an adsorbent for heavy metal ions removal. Chemosphere, v.254, p.1-9. doi: 10.1016/j.chemosphere.2020.126903
  27. Mucci, A. (1983) The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure. Am. J. Sci., v.283, p.780-799. doi: 10.2475/ajs.283.7.780
  28. Mulopo, J., Mashego, M., and Zvimba, J.N. (2012) Recovery of calcium carbonate from steelmaking slag and utilization for acid mine drainage pre-treatment. Water Sci. Technol., v.65(12), p.2236-2241. doi: 10.2166/wst.2012.143
  29. Neculita, C.M., Zagury, G.J., and Bussiere, B. (2007) Passive treatment of acid mine drainage in bioreactors using sulphate-reducing bacteria: Critical review and research needs. J. Environ. Qual., v.36, p.1-16. doi: 10.2134/jeq2006.0066
  30. Nordstrom, D.K., Alpers, C.N., Ptacek, C., and Blowes, D.W. (2000) Negative pH and extremely acidic mine waters from Iron Mountain, California. Environ. Sci. Technol., v.34, p.254-258. doi: 10.1021/es990646v
  31. Ouakibi, O., Hakkou, R., and Benzaazoua, M. (2014) Phosphate carbonated wastes used as drains for acidic mine drainage passive treatment. Procedia Engineering, v.83, p.407-414. doi: 10.1016/j.proeng.2014.09.049
  32. Pickering, W.F. (1983) Extraction of copper, lead, zinc, or cadmium ions sorbed on calcium carbonate. Water, Air, and Soil Pollution, v.20(3), p.299-309. doi: 10.1007/BF00284635
  33. Rao, K.S., Mohapatra, M., Anand, S., and Venkateswarlu, P. (2010) Review on cadmium removal from aqueous solutions. International Journal of Engineering, Science and Technology, v.2(7), p.81-103. doi: 10.4314/ijest.v2i7.63747
  34. Sdiri, A. and Higashi, T. (2013) Simultaneous removal of heavy metals from aqueous solution by natural limestones. Applied Water Science, v.3(1), p.29-39. doi: 10.1007/s13201-012-0054-1
  35. Silyakova, B.A., Shlyk, N.A., Romanovsky, V.V., and Ovsepyan, S.A. (2017) Calcite, aragonite, and solubility of carbonate minerals in the sediments of the Chukchi and East Siberian Seas (the Arctic Ocean). Minerals, v.7(6), 99.
  36. Skousen, J.G. and Ziemkiewicz, P.F. (2005) Performance of 116 passive treatment systems for acid mine drainage. In National Meeting of the American Society of Mining and Reclamation, Breckenridge, CO, June 19-23, 2005, Lexington, 1100-1133. doi: 10.21000/JASMR05011100
  37. Wicks, C.M. and Groves, C.G. (1993) Acidic mine drainage in carbonate terrains: Geochemical processes and rates of calcite dissolution. Journal of Hydrology, v.146, p.13-27. doi: 10.1016/0022-1694(93)90267-D
  38. Zachara, J.M., Cowan, C.E., and Resch, C.T. (1991) Sorption of divalent metals on calcite. Geochimica et Cosmochimica Acta, v.55(5), p.1549-1562. doi: 10.1016/0016-7037(91)90127-Q
  39. Zhang, R., Richardson, J.J., Masters, A.F., Yun, G., Liang, K., and Maschmeyer, T. (2018) Effective removal of toxic heavy metal ions from aqueous solution by CaCO3 microparticles. Water Air Soil Pollut, v.229(4), p.136-149. doi: 10.1007/s11270-018-3787-0