DOI QR코드

DOI QR Code

Biocontrol of Southern Blight Caused by Sclerotium rolfsii in Pepper Plants Using Bacillus subtilis GJ6-14

  • Hae Jung Moon (Division of Agricultural Microbiology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Mee Kyung Sang (Division of Agricultural Microbiology, National Institute of Agricultural Sciences, Rural Development Administration)
  • Received : 2024.04.23
  • Accepted : 2024.05.20
  • Published : 2024.06.30

Abstract

Southern blight, caused by the soil-borne fungus Sclerotium rolfsii, is a serious disease that affects many economically important crops. In this study, we selected Bacillus subtilis GJ6-14, from a total of 260 strains, to control Southern blight in pepper plants. In both seedling and plant tests, GJ6-14 significantly suppressed disease incidence and severity compared to control, furthermore, GJ6-14 demonstrated efficient colonization in the rhizosphere by maintaining the population from log 5.41 to log 3.92 in the pathogen-inoculated plants, indicating its potential as a biocontrol agent. Molecular analysis revealed up-regulation of defense-related genes, such as a 7.6-fold increase in LOX1 and 15.5-fold increase in PR1, at 72 hr after inoculation of S. rolfsii in GJ6-14-treated plants, suggesting activation of plant defense mechanisms. Overall, our findings highlight the promising role of B. subtilis GJ6-14 as a potential biocontrol agent in sustainable management of Southern blight in pepper plants.

Keywords

Acknowledgement

This work was supported by the National Institute of Agricultural Sciences (Project No. PJ01505102), Rural Development Administration, Republic of Korea.

References

  1. Bidima, M. G. S., Chtaina, N., Ezzahiri, B., El Guilli, M. and Barakat, I. 2022. Effect of soil solarization and organic amendments on Sclerotium rolfsii Sacc sclerotia. Arch. Phytopathol. Plant Prot. 55: 1014-1030.
  2. Chen, L., Wu, Y. D., Chong, X. Y., Xin, Q. H., Wang, D. X. and Bian, K. 2020. Seed-borne endophytic Bacillus velezensis LHSB1 mediate the biocontrol of peanut stem rot caused by Sclerotium rolfsii. J. Appl. Microbiol. 128: 803-813.
  3. Dimkic, I., Janakiev, T., Petrovic, M., Degrassi, G. and Fira, D. 2022. Plant-associated Bacillus and Pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms - a review. Physiol. Mol. Plant Pathol. 117: 101754.
  4. Dwivedi, S. K. and Prasad, G. 2016. Integrated management of Sclerotium rolfsii: an overview. Eur. J. Biomed. Pharm. Sci. 3: 137-146.
  5. Elnahal, A. S. M., El-Saadony, M. T., Saad, A. M., Desoky, E.-S. M., ElTahan, A. M., Rady, M. M. et al. 2022. The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: a review. Eur. J. Plant Pathol. 162: 759-792.
  6. Etesami, H., Jeong, B. R. and Glick, B. R. 2023. Biocontrol of plant diseases by Bacillus spp. Physiol. Mol. Plant Pathol. 126: 102048.
  7. Fan, H., Zhang, Z., Li, Y., Zhang, X., Duan, Y. and Wang, Q. 2017. Biocontrol of bacterial fruit blotch by Bacillus subtilis 9407 via surfactin-mediated antibacterial activity and colonization. Front. Microbiol. 8: 1973.
  8. Fernandes, L. B. and Ghag, S. B. 2022. Molecular insights into the jasmonate signaling and associated defense responses against wilt caused by Fusarium oxysporum. Plant Physiol. Biochem. 174: 22-34.
  9. Grahovac, J., Pajcin, I. and Vlajkov, V. 2023. Bacillus VOCs in the context of biological control. Antibiotics (Basel) 12: 581.
  10. Jang, H., Kim, S. T. and Sang, M. K. 2022. Suppressive effect of bioactive extracts of Bacillus sp. H8-1 and Bacillus sp. K203 on tomato wilt caused by Clavibacter michiganensis subsp. michiganensis. Microorganisms 10: 403.
  11. Kamle, M., Borah, R., Bora, H., Jaiswal, A. K., Singh, R. K. and Kumar, P. 2020. Systemic acquired resistance (SAR) and induced systemic resistance (ISR): role and mechanism of action against phytopathogens. In: Fungal Biotechnology and Bioengineering. Fungal Biology, eds. by A. L. Hesham, R. Upadhyay, G. Sharma, C. Manoharachary and V. Gupta, pp. 457-470. Springer, Cham, Switzerland.
  12. Karim, K. M., Rafii, M. Y., Misran, A. B., Ismail, M. F. B., Harun, A. R., Khan, M. M. H. et al. 2021. Current and prospective strategies in the varietal improvement of chilli (Capsicum annuum L.) specially heterosis breeding. Agronomy 11: 2217.
  13. Keinath, A. P. and DuBose, V. B. 2017. Management of southern blight on tomato with SDHI fungicides. Crop Prot. 101: 29-34.
  14. Kim, H. S., Lee, S. A., Kim, Y., Sang, M. K., Song, J., Chae, J.-C. et al. 2018a. Enhancement of tomato tolerance to biotic and abiotic stresses by Variovorax sp. PMC12. Res. Plant Dis. 24: 221-232. (In Korean)
  15. Kim, H. S., Sang, M. K., Jeun, Y.-C., Hwang, B. K. and Kim, K. D. 2008. Sequential selection and efficacy of antagonistic rhizobacteria for controlling phytophthora blight of pepper. Crop Prot. 27: 436-443.
  16. Kim, Y. K., Park, S. H., Kim, H. S., Shim, C. K., Park, J. H. et al. 2018b. Outbreak of Southern blight (Sclerotium rolfsii) of red pepper in the open field at Wanju and its control. In: Proceeding 2018 International Joint Conference on Plant Protection, p. 239, Gwangju, Korea.
  17. Kwon, J.-H. and Park, C.-S. 2018. Stem rot of Capsicum annuum caused by Sclerotium relfsii in Korea. Res. Plant Dis. 10: 21-24. (In Korean)
  18. Latunde-Dada, A. O. 1993. Biological control of southern blight disease of tomato caused by Sclerotium rolfsii with simplified mycelial formulations of Trichoderma koningii. Plant Pathol. 42: 522-529.
  19. Lee, S. H., Kim, I. S. and Kim, Y. C. 2014. Identification and characterization of novel biocontrol bacterial strains. Res. Plant Dis. 20: 182-188.
  20. Mahapatra, S., Yadav, R. and Ramakrishna, W. 2022. Bacillus subtilis impact on plant growth, soil health and environment: Dr. Jekyll and Mr. Hyde. J. Appl. Microbiol. 132: 3543-3562.
  21. Maurer, K. A., Zachow, C., Seefelder, S. and Berg, G. 2013. Initial steps towards biocontrol in hops: successful colonization and plant growth promotion by four bacterial biocontrol agents. Agronomy 3: 583-594.
  22. Mullen, J. 2001. Southern blight, southern stem blight, white mold. Updated 2006. URL https://doi.org/10.1094/PHI-I-2001-0104-01 [22 April 2024].
  23. Pirttila, A. M., Mohammad Parast Tabas, H., Baruah, N. and Koskimaki, J. J. 2021. Biofertilizers and biocontrol agents for agriculture: how to identify and develop new potent microbial strains and traits. Microorganisms 9: 817.
  24. Raymaekers, K., Ponet, L., Holtappels, D., Berckmans, B. and Cammue, B. P. 2020. Screening for novel biocontrol agents applicable in plant disease management-a review. Biol. Control 144: 104240.
  25. Remesal, E., Lucena, C., Azpilicueta, A., Landa, B. B. and Navas-Cortes, J. A. 2010. First report of Southern blight of pepper caused by Sclerotium rolfsii in Southern Spain. Plant Dis. 94: 280.
  26. Sang, M. K. and Kim, K. D. 2012. The volatile-producing Flavobacterium johnsoniae strain GSE09 shows biocontrol activity against Phytophthora capsici in pepper. J. Appl. Microbiol. 113: 383-398.
  27. Tsotetsi, T., Nephali, L., Malebe, M. and Tugizimana, F. 2022. Bacillus for plant growth promotion and stress resilience: what have we learned? Plants (Basel) 11: 2482.
  28. Xu, M., Zhang, X., Yu, J., Guo, Z., Wu, J., Li, X. et al. 2020. Biological control of peanut southern blight (Sclerotium rolfsii) by the strain Bacillus pumilus LX11. Biocontrol Sci. Technol. 30: 485-489.
  29. Yamamoto, S. and Harayama, S. 1995. PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl. Environ. Microbiol. 61: 1104-1109.
  30. Yang, J., Duan, G., Li, C., Liu, L., Han, G., Zhang, Y. et al. 2019. The crosstalks between jasmonic acid and other plant hormone signaling highlight the involvement of jasmonic acid as a core component in plant response to biotic and abiotic stresses. Front. Plant Sci. 10: 1349.
  31. You, J., Tang, T., Wang, F., Mao, T., Yuan, B., Guo, J. et al. 2021. Baseline sensitivity and control efficacy of strobilurin fungicide pyraclostrobin against Sclerotium rolfsii. Plant Dis. 105: 3503-3509.