Acknowledgement
This work was supported by the National Institute of Agricultural Sciences (Project No. RS-2020-RD009033, PJ PJ01497802), Rural Development Administration, Republic of Korea.
References
- Al-Andal, A., Moustafa, M. and Alrumman, S. 2019. Variations in chemicals and antimicrobial properties of Schinus mole fruits grown in Abha area, Saudi Arabia. Arab. J. Sci. Eng. 44: 87-101. https://doi.org/10.1007/s13369-018-3660-x
- Al-Daghari, D. S. S., Al-Mahmooli, I. H., Al-Sadi, A. M., Al-Sabahi, J. N. and Velazhahan, R. 2020. Production of antifungal metabolites by the antagonistic bacterial isolate Pseudomonas resinovorans B11. Indian Phytopathol. 73: 771-775. https://doi.org/10.1007/s42360-020-00264-5
- Chai, C. H., Hong, C.-F. and Huang, J.-W. 2022. Identification and characterization of a multifunctional biocontrol agent, Streptomyces griseorubiginosus LJS06, against cucumber anthracnose. Front. Microbiol. 13: 923276.
- El Zawawy, N. A., El-Shenody, R. A., Ali, S. S. and El-Shetehy, M. 2020. A novel study on the inhibitory effect of marine macroalgal extracts on hyphal growth and biofilm formation of candidemia isolates. Sci. Rep. 10: 9339.
- Kim, B. S., Moon, S. S. and Hwang, B. K. 1999. Isolation, identification, and antifungal activity of a macrolide antibiotic, oligomycin A, produced by Streptomyces libani. Can. J. Bot. 77: 850-858.
- Kim, B.-R., Hahm, S.-S., Kwon, M.-K., Kim, Y.-J., Kim, W.-S. et al. 2021. Environment-friendly control of cucumber downy mildew using chlorine dioxide. Res. Plant. Dis. 27: 149-154. (In Korean) https://doi.org/10.5423/RPD.2021.27.4.149
- Kim, D. R. and Kwak, Y.-S. 2023. Optimization of culture and sporulation for two plant beneficial Streptomyces strains. Res. Plant Dis. 29: 174-183. (In Korean) https://doi.org/10.5423/RPD.2023.29.2.174
- Kim, J., Kim, J.-C. and Sang, M. K. 2023. Identification of isomeric cyclo(leu-pro) produced by Pseudomonas sesami BC42 and its differential antifungal activities against Colletotrichum orbiculare. Front. Microbiol. 14. 1230345.
- Kim, J. and Sang, M. K. 2023. Biocontrol activities of Peribacillus butanolivorans KJ40, Bacillus zanthoxyli HS1, B. siamensis H30-3 and Pseudomonas sp. BC42 on anthracnose, bacterial fruit blotch and Fusarium wilt of cucumber plants. Res. Plant Dis. 29: 188-192. (In Korean) https://doi.org/10.5423/RPD.2023.29.2.188
- Kim, Y.-K., Park, S.-H., Um, D.-O., Hong, S.-J., Cho, J.-L., Ahn, N.-H. et al. 2018. Control of cucumber downy mildew using resistant cultivars and organic materials. Res. Plant. Dis. 24: 153-161. (In Korean) https://doi.org/10.5423/RPD.2018.24.2.153
- Kwak, H.-S., Kim, J., Park, J. W. and Sang, M. K. 2021. Selection of antagonistic soil actinomycetes against both Colletotrichum orbiculare and Botrytis cinerea in cucumber plants. Korean J. Org. Agric. 29: 575-588. (In Korean)
- Lee. Y. J., Ko, Y. J. and Jeun, Y. C. 2016. Illustration of disease suppression of anthracnose on cucumber leaves by treatment with Chlorella fusca. Res. Plant. Dis. 22: 257-263. (In Korean) https://doi.org/10.5423/RPD.2016.22.4.257
- Olanrewaju, O. S. and Babalola, O. O. 2019. Streptomyces: implications and interactions in plant growth promotion. Appl. Microbiol. Biotechnol. 103: 1179-1188. https://doi.org/10.1007/s00253-018-09577-y
- Wedge, D. E. and Nagle, D. G. 2000. A new 2D-TLC bioautography method for the discovery of novel antifungal agents to control plant pathogens. J. Nat. Prod. 63: 1050-1054. https://doi.org/10.1021/np990628r