DOI QR코드

DOI QR Code

국부 근접 난방 모듈을 이용한 전기차 탑승자의 열쾌적성에 대한 실험적 연구

Experimental study on Thermal Comfort of Electric Vehicle Occupants Using Local Proximity Heating Module

  • 이채열 (금오공과대학교 기계공학과 대학원) ;
  • 임종한 (금오공과대학교 기계공학과 대학원) ;
  • 이재욱 ((주)할크) ;
  • 박상희 (금오공과대학교 기계공학과)
  • Chae-Yeol Lee (Dept. of mechanical engineering, Kumoh National Institute of Technology) ;
  • Jong-Han Im (Dept. of mechanical engineering, Kumoh National Institute of Technology) ;
  • Jae-Wook Lee (Hal k Co. Ltd) ;
  • Sang-Hee Park (Dept. of mechanical engineering, Kumoh National Institute of Technology)
  • 투고 : 2024.05.17
  • 심사 : 2024.06.18
  • 발행 : 2024.06.30

초록

In order to meet the technological demand for indoor heating systems that ensure winter thermal comfort during the transition from internal combustion engines to electrification, a localized proximity heating module using surface heating elements was developed. The operational performance of heating module was tested in the low temperature chamber. The experiment conditions were varied by changing the chamber temperature (-10, 0℃), the air flow rate (6.2, 6.0, 4.2m3/h), the heater power (100, 80, 60, 40W). Thermal comfort model was confirmed using the CBE Thermal Comfort Tool applying ASHRAE standard 55. Under -10℃ condition, thermal comfort was satisfied at 23.4, 23.2℃ at power of 100W and air flow rate 6.0, 4.6m3/h. Under 0℃ condition, at power of 80W, air flow rate 6.2, 6.0m3/h, and at power of 60W, air flow rate 4.6m3/h showed results of 25.7, 26.1, 23.0℃, respectively, satisfying thermal comfort. This study analyzed the operating performance of the local proximity heating module in the low temperature chamber and applied thermal comfort model to prove applicability of local proximity heating module using surface heating elements and how to utilize the thermal comfort model.

키워드

참고문헌

  1. 유진영, 이길우, "하이브리드 차량용 난방시스템 및 하이브리드 차량용 난방시스템의 제어 방법", 특허 10-2016-0102672, (2016).
  2. M.H.Park, S.C.Kim, "Heating Performance Characteristics of High-Voltage PTC Heater for an Electric Vehicle", Energy, 10, (2017).
  3. G. Mimberg and C. Massonet, "Battery Concepts to Minimize the Climate-related Reduction of Electric Vehicles Driving Range", 2017 12th International Conference on Ecological Vehicles and Renewable Energies(EVER), (2017)
  4. 이동규, 권대복, 우상구, 이성제, 안용남, 박재우, "탑승자 괘적성 향상을 위한 국부 근접 A/C 시스템 개발", 한국자동차공학회 춘계학술대회, (2017).
  5. Y.I. Lee, H.J. Lee, B.H.Kang and J.K.Kim, "Machine Learning-based Personal Thermal Comfort Model for Electric Vehicles with Local Infrared Radiant Warmer", J.Mechnical Sci. Tech., Vol 35(7), (2021).
  6. 이대웅, "차량용 공기 순환 장치가 후석 승객의 온열 쾌적성에 미치는 영향에 관한 연구", K.J. Air-conditioning and Refrigeration Eng., Vol 33(11), (2021).
  7. Ford motor Corp., "Thermal Comfort Report for North America Consumer report", (2003).
  8. P.O.Fanger, "Thermal Comfort", Danish Technical Press, Copenhagen, (1970).
  9. J.A. Stolwijik, "A Mathematical Model of Physiological Temperature Regulation in Man", NASA Report, (1970).
  10. ASHRAE, "Thermal Environmental Conditions for Human Occupancy", ASHRAE Standard 55-1992, Atlanta, (1992).
  11. A. Alahmer, M. Omar, A. R. Mayyas and A. Qattawi, "Analysis of vehicular cabins' thermal sensation and comfort state, under relative humidity and temperature control, using Berkeley and Fanger models", Building & Environ., 48, (2012).
  12. H. Zhang, E. Arens, C. Huizenga and T. Han, "Thermal sensation and comf ort models f or non-uniform and transient environments Part I, Part II, Part III : local sensation of individual body parts", Building & Environ., (2009).
  13. cbe.berkeley.edu /research/cbe-thermal-comfort-tool/