DOI QR코드

DOI QR Code

경험적 동상 예측 모델 간의 상관관계 분석

Correlation Analysis of Empirical Frost Heave Prediction Models

  • 이장근 ;
  • 진현우 ;
  • 공정
  • Jangguen Lee (Department of Future & Smart Construction Engineering, Korea Institute of Civil Engineering and Building Technology (KICT), University of Science & Technology) ;
  • Hyunwoo Jin (Department of Future & Smart Construction Research, Korea Institute of Civil Engineering and Building Technology (KICT)) ;
  • Zheng Gong (Korea Institute of Civil Engineering and Building Technology (KICT), University of Science & Technology)
  • 투고 : 2024.06.11
  • 심사 : 2024.06.24
  • 발행 : 2024.07.01

초록

동토지반의 중요한 공학적 특성 중 하나인 동상으로 인해 다양한 피해가 발생한다. 동상 거동을 예측하고자 열-수리 연계 해석이 개발되었으나, 입력변수가 과도하고 주로 점토성 토양의 동상에 대한 신뢰성 평가만 수행되었다. 동상은 점토성 토양과 비교하여 상대적으로 투수계수가 높은 실트질 토양에서 주로 발생하고 있어 주의가 필요하다. 본 연구에서는 비교적 간단하게 동상 거동 예측이 가능한 경험적 모델을 소개하고 실트질 토양을 대상으로 모델의 신뢰성을 검증하였다. 검증이 완료된 모델을 이용하여 핵심 입력변수의 상관관계를 제시하였다. 본 연구에서 도출된 경험적 모델의 상관관계는 향후 동토지반을 대상으로 지반구조물의 열-역학 해석에 활용성이 높을 것으로 예상된다.

Frost heave is one of the significant engineering characteristics of frozen ground and causes severe damages on geo-structures. Although thermo-hydro coupled analyses have been developed to predict frost heave behavior, these analyses involve excessive input parameters and have primarily been validated for frost heave in clayey soils. Frost heave mainly occurs in silty soils, which have relatively higher permeability compared to clayey soils, necessitating careful attention. This study introduces empirical models and verifies their reliability for silty soils. By using the validated model, the correlation of key input parameters is derived, which is expected to enhance the applicability of thermal-mechanical analysis for geo-structures on frozen ground in the future.

키워드

과제정보

본 연구는 과학기술정보통신부 한국건설기술연구원 연구운영비지원(주요사업)사업으로 수행되었습니다(과제번호 20241084-001, 극한건설 환경 구현 인프라 및 TRL6 이상급 극한건설 핵심기술 개발).

참고문헌

  1. Akagawa, S. (1988), Experimental study of frozen fringe characteristics, Cold Regions Science and Technology, Vol. 15, pp. 209~223. 
  2. Azmatch, T. F., Sego, D. C., Arenson, L. U. and Biggar, K. W. (2011), Tensile strength and stress-strain behaviour of Devon silt under frozen fringe conditions, Cold Regions Science and Technology, Vol. 68, pp. 85~90. 
  3. Bronfenbrener, L. and Bronfenbrener, R. (2010), Modeling frost heave in freezing soil, Cold Regions Science and Technology, Vol. 61, No. 1, pp. 43~64. 
  4. Casagrande, A. (1931), Discussion of frost heaving, Highway Research Board, Proceedings, Vol. 11, pp. 163~172. 
  5. Chamberlain, E. J. (1981), Frost susceptibility of soil, review of index tests, Cold Regions Research and Engineering Lab Hanover NH, Hanover 
  6. Chen, S. X. (2008), Thermal conductivity of sands, Heat Mass Transfer, Vol. 44, pp. 1241~1246. 
  7. Jin, H., Ryu, B.H., Kang, J. and Lee, J. (2021), Engineering approach to determination of the segregation potential by the upward-step-freezing testing method, Cold Regions Science and Technology, 191, 103361-1-15. 
  8. Konrad, J.M. (1994), Sixteenth canadian geotechincal colloquium: Frost heave in soils: Concepts and engineering, Canadian Geotechnical Journal, 31, 223~245. 
  9. Michalowski, R. L. (1993), A constitutive model of saturated soils for frost heave simulations, Cold Regions Science and Technology, Vol. 22, No. 1., pp. 47~63. 
  10. Michalowski, R. L. and Zhu, M. (2006), Frost heave modelling using porosity rate function, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 30, pp. 703~722. 
  11. Lee, J., Gong, Z., Jin, H. and Ryu, B. H. (2023), Numerical model with segregation potential on frost heave and reliability assessment for silty soils, Journal of the Korean Geo-Environmental Society, Vol. 24, No. 9, pp. 41~46. 
  12. O'Nelli, K. (1983), The physics of mathematical frost heave models: a review, Cold Regions Science and Technology, Vol. 6, No. 3, pp. 275~291. 
  13. Park, D. -S., Shin, M. -B. and Seo, Y. -K (2021), Development of numerical analysis model for the calculation of thermal conductivity of thermo-syphon, Journal of the Korean Geotechnical Society, Vol. 37, No. 1, pp. 5~15 (In Korean). 
  14. Thomas, H. R., Cleall P., Li, Y.-C., Harris, C. and Kern-luetschg, M. (2009), Modelling of cryogenic processes in permafrost and seasonally frozen soils, Geotechnique, Vol. 59, No. 3, pp. 173~184. 
  15. Tice, A. R., Black, P. B. and Berg, R. L. (1989), Unfrozen water contents of undisturbed and remolded alaskan silt, Cold Regions Science and Technology, Vol. 17, No. 2, pp. 103~111. 
  16. Williams, P. J. and Smith, M. W. (1989), The frozen earth: fundamentals of geocryology, Cambridge University Press, Cambridge, pp. 1~306. 
  17. Zhang, Y. (2014), Thermal-hydro-mechanical model for freezing and thawing of soils, the University of Michigan, Michigan, pp. 1~217. 
  18. Zhou, J. and Li, D. (2012), Numerical analysis of coupled water, heat and stress in saturated freezing soil, Cold Regions Science and Technology, Vol. 72, pp. 43~49. 
  19. Zhu, M. (2006), Modeling and simulation of frost heave in frost-susceptible soils, the University of Michigan, Michigan, pp. 1~232.