DOI QR코드

DOI QR Code

Possibility of non-invasive diagnostic method for Kudoa septempunctata using a hyperspectral camera

  • Eung Jun Lee (Department of Marine Life Sciences, Jeju National University) ;
  • Lyu Jin Jun (Department of Marine Life Sciences, Jeju National University) ;
  • Young Juhn Lee (Department of Marine Life Sciences, Jeju National University) ;
  • Yeong Eun Oh (Department of Marine Life Sciences, Jeju National University) ;
  • Sung Hyun Kim (Fishcare laboratory) ;
  • Heung-soe Kim (Globit Co., Ltd) ;
  • Ye Ji Kim (National Fishery Products Quality Management Services, Jeonju regional office) ;
  • Joon Bum Jeong (Department of Marine Life Sciences, Jeju National University)
  • Received : 2024.05.17
  • Accepted : 2024.06.11
  • Published : 2024.06.30

Abstract

Kudoa septempunctata, a myxozoan parasite, usually presents without any signs and primarily infects adult fish. The invasive diagnostic methods, such as tissue biopsy, can identify pathogens, but cause economic losses because they require killing the fish. In this study, we conducted a monitoring of four fish farms located on Jeju Island, to investigate the potential for non-invasive diagnosis of K. septempunctata using hyperspectral cameras. It provides spectral information from R000_B000_G000 to R255_B255_G255 for a total of 3,282 olive flounder (Paralichthys olivaceus). Each object is imaged with 2,000 data points, allowing comprehensive spectral analysis by comparing images obtained from negative control objects to positive control objects. Noticeable differences were observed in the brightness or pallor of the positive control images. This suggests the potential utility of hyperspectral imaging as a non-invasive diagnostic tool for detecting K. septempunctata infections in fish populations.

Keywords

Acknowledgement

This work was supported by the 2024 education, research and student guidance grant funded by Jeju National University.

References

  1. Ahn, M., Ko, H. J., Kim, J., Jang, Y., and Shin, T.: Evaluation of the inflammatory response to Kudoa septempunctata genotype ST3 isolated from olive flounder (Paraichthys olivaceus) in Caco-2 cells. Parasite, 25:12-25, 2018. https://doi.org/10.1051/parasite/2018013 
  2. Cho, B. K., Baek, I. S., Lee, N. G., and Mo, C. Y.: Study on bruise detection of 'Fuji' apple using hyperspectral reflectance imagery. Journal of Biosystems Engineering, 36:484-490, 2011. https://doi.org/10.5307/jbe.2011.36.6.484 
  3. Chung, Y. B., and Bae, J. M.: Is there evidence that Kudoa septempunctata can cause an outbreak of acute food poisoning?. Epidemiology and Health, 39:1-3, 2017. https://doi.org/10.4178/epih.e2017004 
  4. Kang, Y. S., Park, J. W., Jang, S. H., Song, H. Y., Kang, K. S., Ryu, C. S., Kim, S. H., Jun, S. R., Kang, T. H., and Kim, G. H.: Spectral band selection for detecting fire blight disease in pear trees by narrowband hyperspectral imagery. Korean Journal of Agricultural and Forest Meteorology, 23:15-33, 2021. https://doi.org/10.5532/KJAFM.2021.23.1.15 
  5. Kawai, T., Sekizuka, T., Yahata, Y., Kuroda, M., Kumeda, Y., Iijima, Y., Kamate, Y., Sugtia-Konishi, Y., and Ohnishi, T.: Identification of Kudoa septempunctata as the causative agent of novel food poisoning outbreaks in Japan by consumption of Paralichthys olivaceus in raw fish. Clinical infectious diseases, 54:1046-1052, 2012. https://doi.org/10.1093/cid/cir1040 
  6. Kim, B., Kim, D., and Cho, S.: A Study on Concrete Efflorescence Assessment using Hyperspectral Camera. Journal of the Korean Society of Safety, 32:98-103, 2017. https://doi.org/10.14346/JKOSOS.2017.32.6.98 
  7. Kim, D. Y., Cho, B. K., and Kim, Y. S.: Prediction of internal quality for cherry tomato using hyperspectral reflectance imagery. Food Engineering Progress, 15:324-331, 2011. https://doi.org/10.7744/cnujas.2012.39.1.117 
  8. Kim, W. S., Kong, K. H., Jung, S. J., Jung, M. H., Jeon, C. H., Kim, J. H., and Oh, M. J.: A survey of Kudoa septempunctata in olive flounder (Paralichthys olivaceus) hatcheries in the southwestern coast of Korea between 2014 and 2015. Journal of fish pathology, 28:109-112, 2015. https://doi.org/10.7847/jfp.2015.28.2.109 
  9. Kudo, G., Barnett, H. J., and Nelson, R. W.: Factors affecting cooked texture quality of Pacific whiting, Merluccius productus, fillets with particular emphasis on the effects of infection by the myxosporeans Kudoa paniformis and K. thyrsitis. Fishery Bulletin, 85:745-756, 1987. https://spo.nmfs.noaa.gov/sites/default/files/pdf-content/1987/854/kudo.pdf. 
  10. Lee, J. B., Kim, E. S., and Lee, S. H.: An analysis of spectral pattern for detecting pine wilt disease using ground-based hyperspectral camera. Korean Journal of Remote Sensing, 30:665-675, 2014. https://doi.org/10.7780/kjrs.2014.30.5.11 
  11. Lee, M. S., Kim, K. S., Min, G., Son, D. H., Kim, J. E., and Kim, S. C.: Recent trends of hyperspectral imaging technology. Electronics and Telecommunications Trends, 34:86-97, 2019. https://doi.org/10.22648/ETRI.2019.J.340108 
  12. Lee, S. U.: Analysis of Kudoa septempunctata as a cause of foodborne illness and its associated differential diagnosis. Epidemiology and Health, 39:1-5, 2017. https://doi.org/10.4178/epih.e2017014 
  13. Matsukane, Y., Sato, H., Tanaka, S., Kamata, Y., and Sugita-Konishi, Y.: Kudoa septempunctata n. sp. (Myxosporea: Multivalvulida) from an aquacultured olive flounder (Paralichthys olivaceus) imported from Korea. Parasitology Research, 107:865-872, 2010. https://doi.org/10.1007/s00436-010-1941-8 
  14. Ministry of Health, Labour and Welfare (MHLW). 2011 Retrieved from http://www.mhlw.go.jp/file/06-Seisakujouhou11130500-Shokuhinanzenbu/0000124372.pdf on Sep 17, 2017. 
  15. Moran, J. D. W., Whitaker, D. J., and Kent, M. L.: A review of the myxosporean genus Kudoa Meglitsch, 1947, and its impact on the international aquaculture industry and commercial fisheries. Aquaculture, 172: 163-196, 1999. https://doi.org/10.1016/S0044-8486(98)00437-2 
  16. NIFS.: Kudoa Diagnostic Manual, 2020.
  17. Ohnishi, T., Kikuchi, Y., Furusawa, H., Kamata, Y., and Sugita-Konishi, Y.: Kudoa septempunctata invasion increases the permeability of human intestinal epithelial monolayer. Foodborne Pathogens and Disease, 10:137-142, 2013. https://doi.org/10.1089/fpd.2012.1294 
  18. Song, J. Y., Choi, J. H., Choi, H. S., Jung, S. H., and Park, M.: Monitoring of Kudoa septempunctata in cultured olive flounder and wild fish in Jeju Island during 2012. Journal of Fish Pathology, 26:129-137, 2013. https://doi.org/10.7847/jfp.2013.26.3.129 
  19. Song, J. Y., Jung, S. H., and Choi, H. S.: Evaluation of a non-destructive diagnostic Test for Kudoa septempunctata in farmed olive flounder Paralichthys olivaceus. Korean Journal of Fisheries and Aquatic Sciences, 51:23-30, 2018. https://doi.org/10.5657/KFAS.2018.0023 
  20. Song, J. Y., Kim, M. J., Choi, H. S., and Jung, S. H.: Monitoring Kudoa septempunctata in cultured olive flounder Paralichthys olivaceus in different regions of Korea in 2013. Korean Journal of Fisheries and Aquatic Sciences, 47:611-621, 2014. https://doi.org/10.5657/KFAS.2014.0611 
  21. Schuler, G. D., Altschul, S. F., and Lipman, D. J.: A workbench for multiple alignment construction and analysis. Proteins: Structure, Function, and Bioinformatics, 9:180-190, 1991. https://doi.org/10.1002/prot.340090304 
  22. Takeuchi, F., Ogasawara, Y., Kato, K., Sekizuka, T., Nozaki, T., Sugita-Konishi, Y., Ohnishi, T., and Kuroda, M.: Genetic variants of Kudoa septempunctata (Myxozoa: Multivalvulida), a flounder parasite causing foodborne disease. Journal of Fish Diseases, 39:667-672, 2016. https://doi.org/10.1111/jfd.12395 
  23. Tamura, K., Stecher, G., and Kumar, S.: MEGA 11: molecular evolutionary genetics analysis version 11. Molecular biology and evolution, 38:3022-3027, https://doi.org/10.1093/molbev/msab1202021. 
  24. Yokoyama, H., Whipps, C. M., Kent, M. L., Mizuno, K., and Kawakami, H.: Kudoa thyrsites from Japanese flounder and Kudoa lateolabracis n. sp. from Chinese sea bass: causative myxozoans of post-mortem myoliquefaction. Fish Pathology, 39:79-85, 2004. https://doi.org/10.3147/jsfp.39.79