과제정보
This study was supported by research funds from Chosun University, 2023. The author is very grateful to two anonymous reviewers for their valuable comments and constructive suggestions.
참고문헌
- T. Dokken, M. Daehlen, T. Lyche, and K. Morken. Good approximation of circles by curvature-continuous Bezier curves. Comput. Aided Geom. Design, 7:33-41, 1990. https://doi.org/10.1016/0167-8396(90)90019-N
- M. Goldapp. Approximation of circular arcs by cubic polynomials. Comput. Aided Geom. Design, 8:227-238, 1991. https://doi.org/10.1016/0167-8396(91)90007-X
- M. Knez and E. Zagar. Interpolation of circular arcs by parametric polynomials of maximal geometric smoothness. Comput. Aided Geom. Design, 63:66-77, 2018. https://doi.org/10.1016/j.cagd.2018.05.002
- E. Zagar. Arc length preserving G2 Hermite interpolation of circular arcs. J. Comput. Appl. Math., 424:115008, 2023.
- H. M. Yoon and Y. J. Ahn. Circular arc approximation by hexic polynomial curves. Comput. Appl. Math., 42:256, 2023.
- K. Hollig and J. Koch. Geometric Hermite interpolation. Comput. Aided Geom. Design, 12(6):567-580, 1995. https://doi.org/10.1016/0167-8396(94)00034-P
- K. Hollig and J. Koch. Geometric Hermite interpolation with maximal order and smoothness. Comput. Aided Geom. Design, 13(8):681-695, 1996. https://doi.org/10.1016/0167-8396(96)00004-0
- L. Xu and J. Shi. Geometric Hermite interpolation for space curves. Comput. Aided Geom. Design, 18:817-829, 2001. https://doi.org/10.1016/S0167-8396(01)00053-X
- M. Krajnc. Geometric Hermite interpolation by cubic G1 splines. Nonlinear Analysis: Theory, Methods & Applications, 70:2614-2626, 2009. https://doi.org/10.1016/j.na.2008.03.048
- G. Jaklic and E. Zagar. Curvature variation minimizing cubic Hermite interpolants. Appl. Math. Comput., 218:3918-3924, 2011. https://doi.org/10.1016/j.amc.2011.09.039
- C. de Boor, K. Hollig, and M. Sabin. High accuracy geometric Hermite interpolation. Comput. Aided Geom. Design, 4:269-278, 1987. https://doi.org/10.1016/0167-8396(87)90002-1
- M. Floater. An O(h2n) Hermite approximation for conic sections. Comput. Aided Geom. Design, 14:135-151, 1997. https://doi.org/10.1016/S0167-8396(96)00025-8
- G. Jaklic, J. Kozak, M. Krajnc, V. Vitrih, and E. Zagar. High-order parametric polynomial approximation of conic sections. Constr. Approx., 38:1-18, 2013. https://doi.org/10.1007/s00365-013-9189-z
- G. Jaklic. Uniform approximation of a circle by a parametric polynomial curve. Comput. Aided Geom. Design, 41:36-46, 2016. https://doi.org/10.1016/j.cagd.2015.10.004
- G. Jaklic and J. Kozak. On parametric polynomial circle approximation. Numerical Algorithms, 77:433-450, 2018. https://doi.org/10.1007/s11075-017-0322-0
- M. Floater. High-order approximation of conic sections by quadratic splines. Comput. Aided Geom. Design, 12(6):617-637, 1995. https://doi.org/10.1016/0167-8396(94)00037-S
- Y. J. Ahn and H. O. Kim. Approximation of circular arcs by Bezier curves. J. Comput. Appl. Math., 81:145-163, 1997. https://doi.org/10.1016/S0377-0427(97)00037-X
- L. Fang. Circular arc approximation by quintic polynomial curves. Comput. Aided Geom. Design, 15:843-861, 1998. https://doi.org/10.1016/S0167-8396(98)00019-3
- L. Fang. G3 approximation of conic sections by quintic polynomial. Comput. Aided Geom. Design, 16:755-766, 1999. https://doi.org/10.1016/S0167-8396(99)00017-5
- S. Mick and O. Roschel. Interpolation of helical patches by kinematic rational Bezier patches. Computers and Graphics, 14:275-280, 1990. https://doi.org/10.1016/0097-8493(90)90038-Y
- I. Juhasz. Approximating the helix with rational cubic Bezier curves. Computer-Aided Design, 27:587-593, 1995. https://doi.org/10.1016/0010-4485(95)99795-A
- G. Seemann. Approximating a helix segment with a rational Bezier curve. Comput. Aided Geom. Design, 14:475-490, 1997. https://doi.org/10.1016/S0167-8396(96)00040-4
- X. Yang. High accuracy approximation of helices by quintic curves. Comput. Aided Geom. Design, 20:303- 317, 2003. https://doi.org/10.1016/S0167-8396(03)00074-8
- Y. J. Ahn. Helix approximation with conic and qadratic Bezier curves. Comput. Aided Geom. Design, 22:551-565, 2005. https://doi.org/10.1016/j.cagd.2005.02.003
- L. Lu. On polynomial approximation of circular arcs and helices. Comput. Math. Appl., 63:1192-1196, 2012. https://doi.org/10.1016/j.camwa.2011.12.036
- S. Kilicoglu. On approximation of helix by 3rd, 5th and 7th order Bezier curves in E3. Thermal Science, 26:525-538, 2022. https://doi.org/10.2298/TSCI22S2525K
- G. Jaklic, B. Juttler, M. Krajnc, V. Vitrih, and E. Zagar. Hermite interpolation by rational Gk motions of low degree. J. Comput. Appl. Math., 240:20-30, 2013. https://doi.org/10.1016/j.cam.2012.08.021
- M. Knez and M. L. Sampoli. Geometric interpolation of ER frames with G2 Pythagorean-hodograph curves of degree 7. Comput. Aided Geom. Design, 88:102001, 2021.
- T. N. Goodman. Properties of β-splines. Journal of Approximation Theory, 44:132-153, 1985. https://doi.org/10.1016/0021-9045(85)90076-0
- T. D. DeRose and B. A. Barsky. Geometric continuity, shape parameters, and geometric constructions for Catmull-Rom splines. ACM Transactions on Graphics (TOG), 7:1-41, 1988. https://doi.org/10.1145/42188.42265
- A. Vavpetic and E. Zagar. A general framework for the optimal approximation of circular arcs by parametric polynomial curves. J. Comput. Appl. Math., 345:146-158, 2019. https://doi.org/10.1016/j.cam.2018.06.020
- R. Herzog and P. Blanc. Optimal G2 Hermite interpolation for 3D curves. Comput.-Aided Design, 117:102752, 2019.
- Y. A. H. Louie, R. L. Somorjai, and A. Klug. Differential geometry of proteins: helical approximations. Journal of Molecular Biology, 168(1):143-162, 1983. https://doi.org/10.1016/S0022-2836(83)80327-1
- D. Fuchs, I. Izmestiev, M. Raffaelli, G. Szewieczek, and S. Tabachnikov. Differential geometry of space curves: forgotten chapters. The Mathematical Intelligencer, 120:1-13, 2023.