DOI QR코드

DOI QR Code

Visualization of Borderline Coronary Artery Lesions by CT Angiography and Coronary Artery Disease Reporting and Data System

관상동맥 질환 판독과 자료 체계와 CT 혈관조영술에서의 경계성 관상동맥 병변

  • Hyewon Park (Department of Radiology, Korea University Anam Hospital, College of Medicine, Korea University) ;
  • Yu-Whan Oh (Department of Radiology, Korea University Anam Hospital, College of Medicine, Korea University) ;
  • Ki Yeol Lee (Department of Radiology, Korea University Guro Hospital, College of Medicine, Korea University) ;
  • Hwan Seok Yong (Department of Radiology, Korea University Guro Hospital, College of Medicine, Korea University) ;
  • Cherry Kim (Department of Radiology, Korea University Ansan Hospital, College of Medicine, Korea University) ;
  • Sung Ho Hwang (Department of Radiology, Korea University Anam Hospital, College of Medicine, Korea University)
  • 박혜원 (고려대학교 의과대학 안암병원 영상의학과) ;
  • 오유환 (고려대학교 의과대학 안암병원 영상의학과) ;
  • 이기열 (고려대학교 의과대학 구로병원 영상의학과) ;
  • 용환석 (고려대학교 의과대학 구로병원 영상의학과) ;
  • 김채리 (고려대학교 의과대학 안산병원 영상의학과) ;
  • 황성호 (고려대학교 의과대학 안암병원 영상의학과)
  • Received : 2023.11.19
  • Accepted : 2024.03.20
  • Published : 2024.03.01

Abstract

Coronary artery disease (CAD) narrows vessel lumens at the sites of atherosclerosis, increasing the risk of myocardial ischemia or infarction. Early and accurate diagnosis of CAD is crucial to significantly improve prognosis and management. CT angiography (CTA) is a noninvasive imaging technique that enables assessment of vascular structure and stenosis with high resolution and contrast. Coronary CTA is useful in the diagnosis of CAD. Recently, the CAD-reporting and data system (CAD-RADS), a diagnostic classification system based on coronary CTA, has been developed to improve intervention efficacy in patients suspected of CAD. While the CADRAD is based on CTA, it includes borderline categories where interpreting the coronary artery status solely based on CTA findings may be challenging. This review introduces CTA findings that fall within the CAD-RADS categories that necessitate additional tests to decide to perform invasive coronary angiography and discusses appropriate management strategies.

관상동맥 질환은 죽상동맥경화(atherosclerosis)로 인해 혈관의 내강이 좁아지면서 심근허혈 또는 경색까지 유발할 수 있는 질병이다. 이런 관상동맥 질환은 조기에 진단해서 치료하면 그만큼 예후가 좋기에 정확한 진단이 환자 관리에서 매우 중요하다. 전산화단층촬영 혈관조영술(CT angiography; 이하 CTA)은 높은 해상도와 대조도를 통해 혈관의 구조 및 협착 정도를 세밀하게 평가할 수 있는 비침습적 영상 진단법이다. 여러 임상시험들이 관상동맥 질환에 대한 조기 진단과 평가에 있어 관상동맥 CTA의 유용성을 보고하였다. 최근에 관상동맥 질환이 의심되는 환자들에 대한 보다 효과적인 처치를 위해 CTA에 기반한 관상동맥 질환 진단 분류 체계인 관상동맥 질환 판독과 자료 체계(coronary artery disease-reporting and data system; 이하 CAD-RADS)가 만들어졌다. 이런 CAD-RADS는 관상동맥 CTA를 기반으로 하지만 CAD-RADS는 CTA 결과만으로 관상동맥의 정확한 상태를 해석하는 것이 어려운 경계선 범주를 포함하고 있다. 본 종설은 침습적 관상동맥 조영술 진행 여부를 결정하기에 앞서 추가검사가 필요한 경계선상 CAD-RADS범주들의 CTA의 소견과 이들에 대한 대처를 논하고자 한다.

Keywords

Acknowledgement

This research was technically supported by the Korea University Advanced Medical Imaging (AMI) Institute.

References

  1. Cury RC, Abbara S, Achenbach S, Agatston A, Berman DS, Budoff MJ, et al. CAD-RADS(TM) coronary artery disease - reporting and data system. An expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Radiology (ACR) and the North American Society for Cardiovascular Imaging (NASCI). Endorsed by the American College of Cardiology. J Cardiovasc Comput Tomogr 2016;10:269-281
  2. Cury RC, Leipsic J, Abbara S, Achenbach S, Berman D, Bittencourt M, et al. CAD-RADSTM 2.0 - 2022 coronary artery disease-reporting and data system: an expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Cardiology (ACC), the American College of Radiology (ACR), and the North America Society of Cardiovascular Imaging (NASCI). JACC Cardiovasc Imaging 2022;15:1974-2001
  3. Gulati M, Levy PD, Mukherjee D, Amsterdam E, Bhatt DL, Birtcher KK, et al. 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR guideline for the evaluation and diagnosis of chest pain: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. Circulation 2021;144:e368-e454
  4. Virani SS, Newby LK, Arnold SV, Bittner V, Brewer LC, Demeter SH, et al. 2023 AHA/ACC/ACCP/ASPC/NLA/PCNA guideline for the management of patients with chronic coronary disease: a report of the American Heart Association/American College of Cardiology Joint Committee on clinical practice guidelines. Circulation 2023;148:e9-e119
  5. Byrne RA, Rossello X, Coughlan JJ, Barbato E, Berry C, Chieffo A, et al. 2023 ESC guidelines for the management of acute coronary syndromes. Eur Heart J 2023;44:3720-3826
  6. Lell MM, Anders K, Uder M, Klotz E, Ditt H, Vega-Higuera F, et al. New techniques in CT angiography. Radiographics 2006;26(Suppl 1):S45-S62
  7. Ghodasara N, Liddell R, Fishman EK, Johnson PT. High-value multidetector CT angiography of the superior mesenteric artery: what emergency medicine physicians and interventional radiologists need to know. Radiographics 2019;39:559-577
  8. Abdulla J, Abildstrom SZ, Gotzsche O, Christensen E, Kober L, Torp-Pedersen C. 64-multislice detector computed tomography coronary angiography as potential alternative to conventional coronary angiography: a systematic review and meta-analysis. Eur Heart J 2007;28:3042-3050
  9. Mowatt G, Cook JA, Hillis GS, Walker S, Fraser C, Jia X, et al. 64-slice computed tomography angiography in the diagnosis and assessment of coronary artery disease: systematic review and meta-analysis. Heart 2008;94:1386-1393
  10. Cheng V, Gutstein A, Wolak A, Suzuki Y, Dey D, Gransar H, et al. Moving beyond binary grading of coronary arterial stenoses on coronary computed tomographic angiography: insights for the imager and referring clinician. JACC Cardiovasc Imaging 2008;1:460-471
  11. Matar FA, Falasiri S, Glover CB, Khaliq A, Leung CC, Mroue J, et al. When should fractional flow reserve be performed to assess the significance of borderline coronary artery lesions: derivation of a simplified scoring system. Int J Cardiol 2016;222:606-610
  12. Lee JW, Kim JY, Han K, Im DJ, Lee KH, Kim TH, et al. Coronary CT angiography CAD-RADS versus coronary artery calcium score in patients with acute chest pain. Radiology 2021;301:81-90
  13. Rossi A, Merkus D, Klotz E, Mollet N, de Feyter PJ, Krestin GP. Stress myocardial perfusion: imaging with multidetector CT. Radiology 2014;270:25-46
  14. Tanabe Y, Kido T, Kurata A, Uetani T, Fukuyama N, Yokoi T, et al. Optimal scan time for single-phase myocardial computed tomography perfusion to detect myocardial ischemia-derivation cohort from dynamic myocardial computed tomography perfusion-. Circ J 2016;80:2506-2512
  15. Nous FMA, Geisler T, Kruk MBP, Alkadhi H, Kitagawa K, Vliegenthart R, et al. Dynamic myocardial perfusion CT for the detection of hemodynamically significant coronary artery disease. JACC Cardiovasc Imaging 2022;15:75-87
  16. Kim SM, Kim YN, Choe YH. Adenosine-stress dynamic myocardial perfusion imaging using 128-slice dualsource CT: optimization of the CT protocol to reduce the radiation dose. Int J Cardiovasc Imaging 2013;29:875-884
  17. Rochitte CE, George RT, Chen MY, Arbab-Zadeh A, Dewey M, Miller JM, et al. Computed tomography angiography and perfusion to assess coronary artery stenosis causing perfusion defects by single photon emission computed tomography: the CORE320 study. Eur Heart J 2014;35:1120-1130
  18. Varga-Szemes A, Meinel FG, De Cecco CN, Fuller SR, Bayer RR 2nd, Schoepf UJ. CT myocardial perfusion imaging. AJR Am J Roentgenol 2015;204:487-497
  19. Branch KR, Busey J, Mitsumori LM, Strote J, Caldwell JH, Busch JH, et al. Diagnostic performance of resting CT myocardial perfusion in patients with possible acute coronary syndrome. AJR Am J Roentgenol 2013;200:W450-W457
  20. Pijls NH, De Bruyne B, Peels K, Van Der Voort PH, Bonnier HJ, Bartunek J Koolen JJ, et al. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med 1996;334:1703-1708
  21. Pijls NH, Tanaka N, Fearon WF. Functional assessment of coronary stenoses: can we live without it? Eur Heart J 2013;34:1335-1344
  22. Kern MJ. Coronary physiology revisited : practical insights from the cardiac catheterization laboratory. Circulation 2000;101:1344-1351 
  23. Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS, et al. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms: results from the prospective multicenter DISCOVER-FLOW (diagnosis of ischemia-causing stenoses obtained via noninvasive fractional flow reserve) study. J Am Coll Cardiol 2011;58:1989-1997 
  24. Tesche C, De Cecco CN, Albrecht MH, Duguay TM, Bayer RR 2nd, Litwin SE, et al. Coronary CT angiography- derived fractional flow reserve. Radiology 2017;285:17-33
  25. Sand NPR, Veien KT, Nielsen SS, Norgaard BL, Larsen P, Johansen A, et al. Prospective comparison of FFR derived from coronary CT angiography with SPECT perfusion imaging in stable coronary artery disease: the ReASSESS study. JACC Cardiovasc Imaging 2018;11:1640-1650
  26. Lu MT, Ferencik M, Roberts RS, Lee KL, Ivanov A, Adami E, et al. Noninvasive FFR derived from coronary CT angiography: management and outcomes in the PROMISE trial. JACC Cardiovasc Imaging 2017;10:1350-1358
  27. Norgaard BL, Hjort J, Gaur S, Hansson N, Botker HE, Leipsic J, et al. Clinical use of coronary CTA-derived FFR for decision-making in stable CAD. JACC Cardiovasc Imaging 2017;10:541-550
  28. Hamilton MCK, Charters PFP, Lyen S, Harries IB, Armstrong L, Richards GHC, et al. Computed tomographyderived fractional flow reserve (FFRCT) has no additional clinical impact over the anatomical coronary artery disease - reporting and data system (CAD-RADS) in real-world elective healthcare of coronary artery disease. Clin Radiol 2022;77:883-890
  29. Lee JY, Oh YW, Lim DS, Yu CW, Park JH, Joo HJ, et al. Relationship between coronary iodine concentration determined using spectral CT and the outcome of percutaneous coronary intervention in patients with chronic total occlusion. Radiol Cardiothorac Imaging 2020;2:e190203
  30. Rajagopal JR, Farhadi F, Richards T, Nikpanah M, Sahbaee P, Shanbhag SM, et al. Evaluation of coronary plaques and stents with conventional and photon-counting CT: benefits of high-resolution photon-counting CT. Radiol Cardiothorac Imaging 2021;3:e210102
  31. Griffin WF, Choi AD, Riess JS, Marques H, Chang HJ, Choi JH, et al. AI evaluation of stenosis on coronary CTA, comparison with quantitative coronary angiography and fractional flow reserve: a CREDENCE trial substudy. JACC Cardiovasc Imaging 2023;16:193-205
  32. Goo HW, Goo JM. Dual-energy CT: new horizon in medical imaging. Korean J Radiol 2017;18:555-569
  33. Hong GS, Jang M, Kyung S, Cho K, Jeong J, Lee GY, et al. Overcoming the challenges in the development and implementation of artificial intelligence in radiology: a comprehensive review of solutions beyond supervised learning. Korean J Radiol 2023;24:1061-1080