DOI QR코드

DOI QR Code

Progress Measurement of Structural Frame Construction using Point Cloud Data

포인트 클라우드 데이터를 활용한 골조공사 진도측정 연구

  • Kim, Ju-Yong (Department of Architectural Engineering, Kyonggi University ) ;
  • Kim, Sanghee (Department of Architectural Engineering, Kyonggi University ) ;
  • Kim, Gwang-Hee (Department of Architectural Engineering, Kyonggi University)
  • 김주용 (경기대학교 건축공학과) ;
  • 김상희 (경기대학교 건축공학과 ) ;
  • 김광희 (경기대학교 건축공학과)
  • Received : 2023.10.25
  • Accepted : 2024.01.31
  • Published : 2024.05.31

Abstract

Recently, 3D laser scanning technology, which can collect accurate and quick information on phenomena, has been attracting attention among smart construction technologies. 3D laser scanning technology can obtain information most similar to reality at construction sites. In this study, we would like to apply a new member identification method to an actual building and present the possibility of applying point cloud data, which can be collected using 3D laser scanning technology, to measuring progress at construction sites. In order to carry out the research, we collected location information for component identification from BIM, set a recognition margin for the collected location information, and proceeded to identify the components that make up the building from point cloud data. Research results We confirmed that the columns, beams, walls, and slabs that make up a building can be identified from point cloud data. The identification results can be used to confirm all the parts that have been completed in the actual building, and can be used in conjunction with the unit price of each part in the project BOQ for prefabricated calculations. In addition, the point cloud data obtained through research can be used as accurate data for quality control monitoring of construction sites and building maintenance management. The research results can contribute to improving the timeliness and accuracy of construction information used in future project applications.

최근 스마트 건설기술 중 현상에 대한 정확하고 빠른 정보수집이 가능한 3D 레이저 스캐닝 기술이 주목받고 있다. 3D 레이저 스캐닝 기술은 건설현장에서 현실과 가장 유사한 정보를 획득할 수 있다. 본 연구에서는 3D 레이저 스캐닝 기술을 활용하여 수집할 수 있는 포인트 클라우드 데이터를 건설현장 진도측정에 적용 가능성에 대하여 새로운 부재 식별방법을 실제 건물에 적용하여 제시하고자 한다. 연구 수행을 위해 BIM으로부터 부재 식별을 위한 위치 정보를 수집, 수집된 위치 정보의 인식 여유 범위를 설정하여 포인트 클라우드 데이터로부터 건물을 구성하고 있는 부재 식별을 진행하였다. 연구결과 포인트 클라우드 데이터로부터 건물을 구성하고 있는 기둥, 보, 벽 그리고 슬라브를 식별할 수 있음을 확인하였다. 식별결과는 실제 건물에 시공이 완료된 부재를 모두 확인할 수 있었으며, 이를 프로젝트 BOQ의 부재별 단가와 연동하여 기성 산출에 활용할 수 있다. 또한, 연구를 통해 획득한 포인트 클라우드 데이터는 건설현장의 품질관리 모니터링 및 건물의 유지관리를 위한 정확한 자료로써 활용될 수 있다. 연구결과는 추후 프로젝트 활용을 위해 사용되는 건설 정보의 적시성 및 정확성 향상에 기여할 수 있을 것으로 사료된다.

Keywords

Acknowledgement

본 연구는 2023년 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (과제번호: NO. 2022R1A14A5028239).

References

  1. Bernat, M., Janowski, A., Rzepa, S., Sobieraj, A., and Szulwic, J. (2014). "Studies on the use of terrestrial laser scanning in the maintenance of buildings belonging to the cultural heritage." 14th Geoconference on Informatics, Geoinformatics and Remote Sensing, SGEM. ORG, Albena, Bulgaria, 3, pp. 307-318.
  2. Bosche, F. (2010). "Automated recognition of 3D CAD model objects in laser scans and calculation of as-built dimensions for dimensional compliance control in construction." Advanced Engineering Informatics , Elsevier, 24(1), pp. 107-118. https://doi.org/10.1016/j.aei.2009.08.006
  3. DeWit, A. (2015). "Komatsu, smart construction, creative destruction, and Japan's robot revolution." The Asia-Pacific Journal, 13(5), pp. 27-33.
  4. Ham, N., Bae, B.I., and Yuh, O.K. (2020.) "Phased reverse engineering framework for sustainable cultural heritage archives using laser scanning and BIM: The case of the Hwanggungwoo (Seoul, Korea)." Sustainability, MDPI, 12(19), 8108.
  5. Han, K.K., and Golparvar-Fard, M. (2015). "Appearance-based material classification for monitoring of operation-level construction progress using 4D BIM and site photologs." Automation in Construction, Elsevier, 53, pp. 44-57. https://doi.org/10.1016/j.autcon.2015.02.007
  6. Kang, S.H. (2008) "Utilizing Data Acquisition Technology (DAT) for Automated Construction Progress Management." Myongji University, Gyonggi, Korea.
  7. Kang, S.H., and Jung, Y.S. (2012). "Data acquisition technology(DAT) selection algorithm for automated progress measurement and management." Korean Journal of Construction Engineering and Management, KICEM, 13(1), pp .77-86. https://doi.org/10.6106/KJCEM.2012.13.1.077
  8. Kim, S.H. (2019). "The construction project EV tracking process based on the 3D point cloud and 4D BIM." Ph.D. Dissertation, Yeungnam University, Gyeongsan, Korea.
  9. Kim T.H., Woo U.T., and Chung G.R. (2019). "3D Scanning Technology for Smart Maintenance of High-rise Buildings." Korea Concrete Institute, 31(6), pp. 39-45.
  10. Kim, C.Y., Kim, B.I., and Kim, H.K. (2013). "4D CAD model updating using image processing-based construction progress monitoring." Automation in Construction, Elsevier, 35, pp. 44-52. https://doi.org/10.1016/j.autcon.2013.03.005
  11. Kim, J.Y., and Kim G.H. (2022). "Application of 3D Laser Scanning Technology to the Measurement of Construction Precision in Building Structral Frame Construction." Journal of the Atchitectural Institute of Korea, Arichitectural Institute of Korea, 38(4), pp .245-253.
  12. Kim, J.Y., and Kim G.H. (2023). "Identifying Members of Common Structures Utilizing Three-Dimensional Detecting Information for 3D Scanning Model Application." Sustainability, MDPI, 15(19), 14073.
  13. Kwon, S.O. (2009). "Application of Shape Information Acquisition Technology using Laser Scanning Technology and BIM Technology to the Construction Industry." Architectural Research, 52(4), pp. 31-38.
  14. Li, J., Yang, B., Cong, Y., Cao, L., Fu, X., and Dong, Z. (2019). "3D forest mapping using a low-cost UAV laser scanning system: Investigation and comparison." Remote Sensing, MDPI, 11(6),p. 717.
  15. M. Golparvar-Fard, F. Pena-Mora, Carlos A.A., and Lee, S.H. (2009). "Visualization of Construction Progress Monitoring with 4D Simulation Model Overlaid on Time-Lapsed Photographs." Journal of Computing in Civil Engineering, ASCE, 23(6), pp. 391-404. https://doi.org/10.1061/(ASCE)0887-3801(2009)23:6(391)
  16. Mendez, V., Perez-Romero, A., Sola-Guirado, R., Miranda-Fuentes, A., Manzano-Agugliaro, F., Zapata-Sierra, A., and RodriguezLizana, A. (2019). "In-Field Estimation of Orange Number and Size by 3D Laser Scanning." Agronomy, MDPI, 9(12), p. 885.
  17. Ministry of land, infrastructure and transport. (2018). Roadmap for Smart Construction Technology to Innovate Construction Productivity and Improve Safety.
  18. Park, J.W., and Kim, S.O. (2018). "Productivity Analysis for the 3D Digitization of Earthwork Sites Based on Scanning Conditions." The Korean Society For Railway, 11(1), pp. 1-9.
  19. Park, J.J. (2011). "A Study on the Schedule Process for Forecasting Progress Rate for Construction Project." Master's thesis. Gyeongsang National University, Gyeongsan, Korea.
  20. Rashidi, M., Mohammadi, M., Sadeghlou Kivi, S., Abdolvand, M.M., Truong-Hong, L., and Samali, B.A. (2020). "Decade of modern bridge monitoring using terrestrial laser scanning: Review and future directions." Remote Sensing, MDPI, 12(22), p. 3796.
  21. S. Tuttasa, A. Braunb, A. Borrmannb, and U. Stillaa. (2015). "Validation of BIM Components by Photogrammetric Point Clouds for Construction Site Monitoring." ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, ISPRS, Munich, Germany, pp. 231-238.
  22. Turkan, Y., Bosche, F., Haas, C., and Haas, R. (2012). "Automated progress tracking using 4D schedule and 3D sensing technologies." Automation in Construction, Elsevier, 22, pp. 414-421. https://doi.org/10.1016/j.autcon.2011.10.003
  23. Turkan, Y., Bosche, F., Haas, C., and Haas, R. (2013). "Tracking Secondary and Temporary Concrete Objects Using 3D Imaging Technologies." Computing in Civil Engineering, ASCE, pp. 23-25.
  24. Wang, H.W., Lin, J.R., and Zhang, J.P. (2020). "Work package-based information modeling for resource-constrained scheduling of construction projects." Automation in Construction, Elsevier, 109, pp. 1-20. https://doi.org/10.1016/j.autcon.2019.102958
  25. Zhu, L., and Hyyppa, J. (2014). "The use of airborne and mobile laser scanning for modeling railway environments in 3D." Remote Sensing, MDPI, 6(4), pp. 3075-3100. https://doi.org/10.3390/rs6043075