DOI QR코드

DOI QR Code

The Plant-Associated Flavobacterium: A Hidden Helper for Improving Plant Health

  • Hyojun Seo (Department of Applied Bioscience, Dong-A University) ;
  • Ju Hui Kim (Department of Applied Bioscience, Dong-A University) ;
  • Sang-Moo Lee (Institute of Agricultural Life Sciences, Dong-A University) ;
  • Seon-Woo Lee (Department of Applied Bioscience, Dong-A University)
  • Received : 2024.01.26
  • Accepted : 2024.04.06
  • Published : 2024.06.01

Abstract

Flavobacterium is a genus within the phylum Bacteroidota that remains relatively unexplored. Recent analyses of plant microbiota have identified the phylum Bacteroidota as a major bacterial group in the plant rhizosphere. While Flavobacterium species within the phylum Bacteroidota have been recognized as pathogens in the aquatic habitats, microbiome analysis and the characterization of novel Flavobacterium species have indicated the great diversity and potential of their presence in various environments. Many Flavobacterium species have positively contribute to plant health and development, including growth promotion, disease control, and tolerance to abiotic stress. Despite the well-described beneficial interactions of the Flavobacterium species with plants, the molecular mechanisms and bacterial determinants underlying these interactions remain unclear. To broaden our understanding of the genus Flavobacterium's role in plant health, we review the recent studies focusing on their ecological niche, functional roles, and determinants in plant-beneficial interactions. Additionally, this review discusses putative mechanisms explaining the interactions between plants and Flavobacterium. We have also introduced the importance of future research on Flavobacterium spp. and its potential applications in agriculture.

Keywords

Acknowledgement

We thank Dr. Kaari Manigundan and Abah Friday for a critical reading of the paper. This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) grant (No. 2020R1A2C3005453 and 2020R1A6A1A03047729 to S-WL, RS-2023-00249410 to S-ML), Biomaterials Specialized Graduate Program funded by the Korean government (MSIT, MOE, ME), Republic of Korea.

References

  1. Acuna, J. J., Rilling, J. I., Inostroza, N. G., Manquian, J., Zhang, Q., Gupta, V. V. S. R. and Jorquera, M. A. 2023. Diversity, community structure, and potential functions of root-associated bacterial communities of different wheat (Triticum aestivum) cultivars under field conditions. Agronomy 13:1392.
  2. Alvarez, B., Secades, P., McBride, M. J. and Guijarro, J. A. 2004. Development of genetic techniques for the psychrotrophic fish pathogen Flavobacterium psychrophilum. Appl. Environ. Microbiol. 70:581-587.
  3. Anzalone, A., Mosca, A., Dimaria, G., Nicotra, D., Tessitori, M., Privitera, G. F., Pulvirenti, A., Leonardi, C. and Catara, V. 2022. Soil and soilless tomato cultivation promote different microbial communities that provide new models for future crop interventions. Int. J. Mol. Sci. 23:8820.
  4. Arias, C. R., LaFrentz, S., Cai, W. and Olivares-Fuster, O. 2012. Adaptive response to starvation in the fish pathogen Flavobacterium columnare: cell viability and ultrastructural changes. BMC Microbiol. 12:266.
  5. Arnon, D. I. 1965. Ferredoxin and photosynthesis. Science 149:1460-1470.
  6. Bahar, O., Mordukhovich, G., Luu, D. D., Schwessinger, B., Daudi, A., Jehle, A. K., Felix, G. and Ronald, P. C. 2016. Bacterial outer membrane vesicles induce plant immune responses. Mol. Plant-Microbe Interact. 29:374-384.
  7. Belimov, A. A., Hontzeas, N., Safronova, V. I., Demchinskaya, S. V., Piluzza, G., Bullitta, S. and Glick, B. R. 2005. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol. Biochem. 37:241-250.
  8. Bergey, D. H., Harrison, F. C., Breed, R. S., Hammer, B. W. and Huntoon, F. M. 1923. Bergey's manual of determinative bacteriology. The Williams and Wilkins Co., MD, USA. pp. 309-321.
  9. Bernardet, J. F. and Bowman, J. P. 2015. Flavobacterium. In: Bergey's manual of systematics of archaea and bacteria, eds. by N. R. Krieg, J. T. Staley, D. R. Brown, B. P. Hedlund, B. J. Paster, N. L. Ward, W. Ludwig and W. B. Whitman, pp. 1-75. John Wiley & Sons, Inc., Hoboken, NJ, USA.
  10. Bodenhausen, N., Horton, M. W. and Bergelson, J. 2013. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS ONE 8:e56329.
  11. Braun, T. F., Khubbar, M. K., Saffarini, D. A. and McBride, M. J. 2005. Flavobacterium johnsoniae gliding motility genes identified by mariner mutagenesis. J. Bacteriol. 187:6943-6952.
  12. Carrion, V. J., Perez-Jaramillo, J., Cordovez, V., Tracanna, V., De Hollander, M., Ruiz-Buck, D., Mendes, L. W., Van Ijcken, W. F. J., Gomez-Exposito, R., Elsayed, S. S., Mohanraju, P., Arifah, A., van der Oost, J., Paulson, J. N., Mendes, R., van Wezel, G. P., Medema, M. H. and Raaijmakers, J. M. 2019. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science 366:606-612.
  13. Chapagain, P., Ali, A., Kidane, D. T., Farone, M. and Salem, M. 2021. sRNAs enriched in outer membrane vesicles of pathogenic Flavobacterium psychrophilum interact with immune genes of rainbow trout. bioRxiv preprint at https://doi.org/10.1101/2021.12.22.473952.
  14. Chapagain, P., Ali, A. and Salem, M. 2023. Dual RNA-Seq of Flavobacterium psychrophilum and its outer membrane vesicles distinguishes genes associated with susceptibility to bacterial cold-water disease in rainbow trout (Oncorhynchus mykiss). Pathogens 12:436.
  15. Chaudhary, D. K., Dahal, R. H. and Kim, J. 2019. Flavobacterium silvisoli sp. nov., isolated from forest soil. Int. J. Syst. Evol. Microbiol. 69:2762-2766.
  16. Chen, Y.-C., Davis, M. A., Lapatra, S. E., Cain, K. D., Snekvik, K. R. and Call, D. R. 2008. Genetic diversity of Flavobacterium psychrophilum recovered from commercially raised rainbow trout, Oncorhynchus mykiss (Walbaum), and spawning coho salmon, O. kisutch (Walbaum). J. Fish Dis. 31:765-773.
  17. Choi, A., Cha, I.-T., Lee, K.-E., Son, Y. K., Yu, J. and Seol, D. 2023. The role of Flavobacterium enshiense R6S-5-6 in the wetland ecosystem revealed by whole-genome analysis. Curr. Microbiol. 80:83.
  18. Chowdhury, C. and Jagannadham, M. V. 2013. Virulence factors are released in association with outer membrane vesicles of Pseudomonas syringae pv. tomato T1 during normal growth. Biochim. Biophys. Acta 1834:231-239.
  19. Connorton, J. M., Balk, J. and Rodriguez-Celma, J. 2017. Iron homeostasis in plants: a brief overview. Metallomics 9:813-823.
  20. Costacurta, A. and Vanderleyden, J. 1995. Synthesis of phytohormones by plant-associated bacteria. Crit. Rev. Microbiol. 21:1-18.
  21. Eckroat, T. J., Greguske, C. and Hunnicutt, D. W. 2021. The type 9 secretion system is required for Flavobacterium johnsoniae biofilm formation. Front. Microbiol. 12:660887.
  22. Fukami, K., Yuzawa, A., Nishijima, T. and Hata, Y. 1992. Isolation and properties of a bacterium inhibiting the growth of Gymnodinium nagasakiense. Nippon Suisan Gakkaishi 58:1073-1077.
  23. Gontia-Mishra, I., Sapre, S., Sharma, A. and Tiwari, S. 2016. Amelioration of drought tolerance in wheat by the interaction of plant growth-promoting rhizobacteria. Plant Biol. 18:992-1000.
  24. Gunasinghe, R. N., Ikiriwatte, C. J. and Karunaratne, A. M. 2004. The use of Pantoea agglomerans and Flavobacterium sp. to control banana pathogens. J. Hortic. Sci. Biotechnol. 79:1002-1006.
  25. Hahm, S., Kim, J., Han, K., Kim, B., Kim, H., Nam, Y. and Yu, S. 2012. Biocontrol efficacy of endophytic bacteria Flavobacterium hercynim EPB-C313 for control of Chinese cabbage clubroot. Res. Plant Dis. 18:210-216 (in Korean).
  26. Hunziker, L., Bonisch, D., Groenhagen, U., Bailly, A., Schulz, S. and Weisskopf, L. 2015. Pseudomonas strains naturally associated with potato plants produce volatiles with high potential for inhibition of Phytophthora infestans. Appl. Environ. Microbiol. 81:821-830.
  27. Inoue, H., Kobayashi, T., Nozoye, T., Takahashi, M., Kakei, Y., Suzuki, K., Nakazono, M., Nakanishi, H., Mori, S. and Nishizawa, N. K. 2009. Rice OsYSL15 is an iron-regulated iron (III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. J. Biol. Chem. 284:3470-3479.
  28. Jung, E. J., Choi, S. Y., Lee, S.-M., Song, J. Y., Lee, H. J., Kim, E., Lee, P. A., Choi, K., Kim, J. F. and Lee, S.-W. 2021. Flavobacterium dauae sp. nov., isolated from rhizosphere soil of a tomato plant. Int. J. Syst. Evol. Microbiol. 71:005033.
  29. Kagan, J., Sharon, I., Beja, O. and Kuhn, J. C. 2008. The tryptophan pathway genes of the Sargasso Sea metagenome: new operon structures and the prevalence of non-operon organization. Genome Biol. 9:R20.
  30. Kim, H., Woo, O.-G., Kim, J. B., Yoon, S.-Y., Kim, J.-S., Sul, W. J., Hwang, J.-Y. and Lee, J.-H. 2023. Flavobacterium sp. strain GJW24 ameliorates drought resistance in Arabidopsis and Brassica. Front. Plant Sci. 14:1257137.
  31. Kim, J.-E., Woo, O.-G., Bae, Y., Keum, H. L., Chung, S., Sul, W. J. and Lee, J.-H. 2020. Enhanced drought and salt stress tolerance in Arabidopsis by Flavobacterium crocinum HYN0056 T. J. Plant Biol. 63:63-71.
  32. Kirchman, D. L. 2002. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol. Ecol. 39:91-100.
  33. Kita, D., Shibata, S., Kikuchi, Y., Kokubu, E., Nakayama, K., Saito, A. and Ishihara, K. 2016. Involvement of the type IX secretion system in Capnocytophaga ochracea gliding motility and biofilm formation. Appl. Environ. Microbiol. 82:1756-1766.
  34. Kolton, M., Erlacher, A., Berg, G. and Cytryn, E. 2016. The Flavobacterium genus in the plant holobiont: ecological, physiological, and applicative insights. In: Microbial models: from environmental to industrial sustainability, ed. by S. Castro-Sowinski, pp. 189-207. Springer-Nature, Berlin, Germany.
  35. Kolton, M., Frenkel, O., Elad, Y. and Cytryn, E. 2014. Potential role of Flavobacterial gliding-motility and type IX secretion system complex in root colonization and plant defense. Mol. Plant-Microbe Interact. 27:1005-1013.
  36. Kolton, M., Sela, N., Elad, Y. and Cytryn, E. 2013. Comparative genomic analysis indicates that niche adaptation of terrestrial Flavobacteria is strongly linked to plant glycan metabolism. PLoS ONE 8:e76704.
  37. Kraut-Cohen, J., Shapiro, O. H., Dror, B. and Cytryn, E. 2021. Pectin induced colony expansion of soil-derived Flavobacterium strains. Front. Microbiol. 12:651891.
  38. Kwak, M.-J., Kong, H. G., Choi, K., Kwon, S.-K., Song, J. Y., Lee, J., Lee, P. A., Choi, S. Y., Seo, M., Lee, H. J., Jung, E. J., Park, H., Roy, N., Kim, H., Lee, M. M., Rubin, E. M., Lee, S.-W. and Kim, J. F. 2018. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat. Biotechnol. 36:1100-1109.
  39. Li, C., Hurley, A., Hu, W., Warrick, J. W., Lozano, G. L., Ayuso, J. M., Pan, W., Handelsman, J. and Beebe, D. J. 2021. Social motility of biofilm-like microcolonies in a gliding bacterium. Nat. Commun. 12:5700.
  40. Lidbury, I. D. E. A., Borsetto, C., Murphy, A. R. J., Bottrill, A., Jones, A. M. E., Bending, G. D., Hammond, J. P., Chen, Y., Wellington, E. M. H. and Scanlan, D. J. 2021. Niche-adaptation in plant-associated Bacteroidetes favours specialisation in organic phosphorus mineralisation. ISME J. 15:1040-1055.
  41. Lin, S.-Y., Hameed, A., Tsai, C.-F. and Young, C.-C. 2023. Description of Flavobacterium agricola sp. nov., an auxin producing bacterium isolated from paddy field. Antonie van Leeuwenhoek 116:1345-1357.
  42. Marin, O., Gonzalez, B. and Poupin, M. J. 2021. From microbial dynamics to functionality in the rhizosphere: a systematic review of the opportunities with synthetic microbial communities. Front. Plant Sci. 12:650609.
  43. Madhaiyan, M., Poonguzhali, S., Lee, J.-S., Lee, K. C. and Sundaram, S. 2010. Flavobacterium glycines sp. nov., a facultative methylotroph isolated from the rhizosphere of soybean. Int. J. Syst. Evol. Microbiol. 60:2187-2192.
  44. Mate, R., Kutasi, J., Bata-Vidacs, I., Kosztik, J., Kukolya, J., Toth, E., Boka, K., Tancsics, A., Kovacs, G., Nagy, I. and Toth, A. 2022. Flavobacterium hungaricum sp. nov. a novel soil inhabitant, cellulolytic bacterium isolated from plough field. Arch. Microbiol. 204:301.
  45. Mawdsley, J. L. and Burns, R. G. 1994. Inoculation of plants with a Flavobacterium species results in altered rhizosphere enzyme activities. Soil Biol. Biochem. 26:871-882.
  46. McBride, M. J. 2014. The family Flavobacteriaceae. Prokaryotes 4:643-676.
  47. McBride, M. J. and Kemp, M. J. 1996. Development of techniques for the genetic manipulation of the gliding bacterium Cytophaga johnsonae. J. Bacteriol. 178:583-590.
  48. McBride, M. J. and Nakane, D. 2015. Flavobacterium gliding motility and the type IX secretion system. Curr. Opin. Microbiol. 28:72-77.
  49. McMillan, H. M., Zebell, S. G., Ristaino, J. B., Dong, X. and Kuehn, M. J. 2021. Protective plant immune responses are elicited by bacterial outer membrane vesicles. Cell Rep. 34:108645.
  50. Menon, R. R., Kumari, S., Viver, T. and Rameshkumar, N. 2020. Flavobacterium pokkalii sp. nov., a novel plant growth promoting native rhizobacteria isolated from pokkali rice grown in coastal saline affected agricultural regions of southern India, Kerala. Microbiol. Res. 240:126533.
  51. Moller, J. D., Barnes, A. C., Dalsgaard, I. and Ellis, A. E. 2005. Characterisation of surface blebbing and membrane vesicles produced by Flavobacterium psychrophilum. Dis. Aquat. Org. 64:201-209.
  52. Murata, Y., Itoh, Y., Iwashita, T. and Namba, K. 2015. Transgenic petunia with the iron (III)-phytosiderophore transporter gene acquires tolerance to iron deficiency in alkaline environments. PLoS ONE 10:e0120227.
  53. Nakane, D., Odaka, S., Suzuki, K. and Nishizaka, T. 2021. Large-scale vortices with dynamic rotation emerged from monolayer collective motion of gliding Flavobacteria. J. Bacteriol. 203:e0007321.
  54. Nishioka, T., Marian, M., Kobayashi, I., Kobayashi, Y., Yamamoto, K., Tamaki, H., Suga, H. and Shimizu, M. 2019. Microbial basis of Fusarium wilt suppression by Allium cultivation. Sci. Rep. 9:1715.
  55. Pahari, A., Pradhan, A., Nayak, S. K. and Mishra, B. B. 2017. Bacterial siderophore as a plant growth promoter. In: Microbial biotechnology. Vol. 1. Applications in agriculture and environment, eds. by J. K. Patra, C. N. Vishnuprasad and G. Das, pp. 163-180. Springer-Nature, Berlin, Germany.
  56. Perez-Jaramillo, J. E., Carrion, V. J., de Hollander, M. and Raaijmakers, J. M. 2018. The wild side of plant microbiomes. Microbiome 6:143.
  57. Riu, M., Son, J.-S., Oh, S.-K. and Ryu, C.-M. 2022. Aromatic agriculture: volatile compound-based plant disease diagnosis and crop protection. Res. Plant Dis. 28:1-18 (in Korean).
  58. Rybak, K. and Robatzek, S. 2019. Functions of extracellular vesicles in immunity and virulence. Plant Physiol. 179:1236-1247.
  59. Ryu, C.-M., Farag, M. A., Hu, C.-H., Reddy, M. S., Kloepper, J. W. and Pare, P. W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134:1017-1026.
  60. Ryu, C.-M., Farag, M. A., Hu, C.-H., Reddy, M. S., Wei, H.-X., Pare, P. W. and Kloepper, J. W. 2003. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 100:4927-4932.
  61. Samad, A., Trognitz, F., Compant, S., Antonielli, L. and Sessitsch, A. 2017. Shared and host-specific microbiome diversity and functioning of grapevine and accompanying weed plants. Environ. Microbiol. 19:1407-1424.
  62. Sang, M. K., Chun, S.-C. and Kim, K. D. 2008. Biological control of Phytophthora blight of pepper by antagonistic rhizobacteria selected from a sequential screening procedure. Biol. Control 46:424-433.
  63. Sang, M. K., Kim, J. D., Kim, B. S. and Kim, K. D. 2011. Root treatment with rhizobacteria antagonistic to Phytophthora blight affects anthracnose occurrence, ripening, and yield of pepper fruit in the plastic house and field. Phytopathology 101:666-678.
  64. Sang, M. K. and Kim, K. D. 2012. The volatile-producing Flavobacterium johnsoniae strain GSE09 shows biocontrol activity against Phytophthora capsici in pepper. J. Appl. Microbiol. 113:383-398.
  65. Sato, K., Naya, M., Hatano, Y., Kondo, Y., Sato, M., Narita, Y., Nagano, K., Naito, M., Nakayama, K. and Sato, C. 2021. Colony spreading of the gliding bacterium Flavobacterium johnsoniae in the absence of the motility adhesin SprB. Sci. Rep. 11:967.
  66. Sato, K., Sakai, E., Veith, P. D., Shoji, M., Kikuchi, Y., Yukitake, H., Ohara, N., Naito, M., Okamoto, K., Reynolds, E. C. and Nakayama, K. 2005. Identification of a new membrane-associated protein that influences transport/maturation of gingipains and adhesins of Porphyromonas gingivalis. J. Biol. Chem. 280:8668-8677.
  67. Sharifi, R., Jeon, J.-S. and Ryu, C.-M. 2022. Belowground plant-microbe communications via volatile compounds. J. Exp. Bot. 73:463-486.
  68. Shoemaker, N. B., Getty, C., Gardner, J. F. and Salyers, A. A. 1986. Tn4351 transposes in Bacteroides spp. and mediates the integration of plasmid R751 into the Bacteroides chromosome. J. Bacteriol. 165:929-936.
  69. Shrivastava, A., Patel, V. K., Tang, Y., Yost, S. C., Dewhirst, F. E. and Berg, H. C. 2018. Cargo transport shapes the spatial organization of a microbial community. Proc. Natl. Acad. Sci. U. S. A. 115:8633-8638.
  70. Sidhu, V. K., Vorholter, F.-J., Niehaus, K. and Watt, S. A. 2008. Analysis of outer membrane vesicle associated proteins isolated from the plant pathogenic bacterium Xanthomonas campestris pv. campestris. BMC Microbiol. 8:87.
  71. Singh, P., Chauhan, P. K., Upadhyay, S. K., Singh, R. K., Dwivedi, P., Wang, J., Jain, D. and Jiang, M. 2022. Mechanistic insights and potential use of siderophores producing microbes in rhizosphere for mitigation of stress in plants grown in degraded land. Front. Microbiol. 13:898979.
  72. Strepparava, N., Wahli, T., Segner, H. and Petrini, O. 2014. Detection and quantification of Flavobacterium psychrophilum in water and fish tissue samples by quantitative real time PCR. BMC Microbiol. 14:105.
  73. Tilak, K. V. B. R., Ranganayaki, N., Pal, K. K., De, R., Saxena, A. K., Nautiyal, C. S., Mittal, S., Tripathi, A. K. and Johri, B. N. 2005. Diversity of plant growth and soil health supporting bacteria. Curr. Sci. 89:136-150.
  74. Tillmann, M., Tang, Q. and Cohen, J. D. 2021. Protocol: analytical methods for visualizing the indolic precursor network leading to auxin biosynthesis. Plant Methods 17:63.
  75. Trivedi, A., Gosai, J., Nakane, D. and Shrivastava, A. 2022. Design principles of the rotary type 9 secretion system. Front. Microbiol. 13:845563.
  76. Tsavkelova, E. A., Cherdyntseva, T. A., Botina, S. G. and Netrusov, A. I. 2007. Bacteria associated with orchid roots and microbial production of auxin. Microbiol. Res. 162:69-76.
  77. Tsukanova, K. A., Chebotar, V. K., Meyer, J. J. M. and Bibikova, T. N. 2017. Effect of plant growth-promoting rhizobacteria on plant hormone homeostasis. S. Afr. J. Bot. 113:91-102.
  78. Walitang, D. I., Kim, K., Madhaiyan, M., Kim, Y. K., Kang, Y. and Sa, T. 2017. Characterizing endophytic competence and plant growth promotion of bacterial endophytes inhabiting the seed endosphere of rice. BMC Microbiol. 17:209.
  79. Wang, B., Chu, J., Yu, T., Xu, Q., Sun, X., Yuan, J., Xiong, G., Wang, G., Wang, Y. and Li, J. 2015. Tryptophan-independent auxin biosynthesis contributes to early embryogenesis in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 112:4821-4826.
  80. Wang, N., Ding, J., Chen, Y., Zhu, Y., Zhang, L., Wei, Y., Li, J., Xu, T. and Ding, G.-C. 2023. Bacillus velezensis BER1 enriched Flavobacterium daejeonense-like bacterium in the rhizosphere of tomato against bacterial wilt. FEMS Microbiol. Ecol. 99:fiad054.
  81. Xu, F., Liao, H., Yang, J., Zhang, Y., Yu, P., Cao, Y., Fang, J., Chen, S., Li, L., Sun, L., Du, C., Wang, K., Dang, X., Feng, Z., Cao, Y., Li, Y., Zhang, J. and Xu, W. 2023. Auxin-producing bacteria promote barley rhizosheath formation. Nat. Commun. 14:5800.
  82. Yakubovskaya, A. I., Melnichuk, T. N., Kameneva, I. A., Shaposhnikov, A. I., Puhalsky, Y. V. and Sazanova, A. L. 2019. Flavobacterium sp. strain No 72-associative simbiont of Oryza sativa L. plants. Asian J. Microbiol. Biotechnol. Environ. Sci. 21:566-571.
  83. Yang, J., Kloepper, J. W. and Ryu, C.-M. 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 14:1-4.
  84. Youseif, S. H. 2018. Genetic diversity of plant growth promoting rhizobacteria and their effects on the growth of maize plants under greenhouse conditions. Ann. Agric. Sci. 63:25-35.
  85. Yuying, M. A., Weisenhorn, P., Guo, X., Wang, D., Yang, T., Shi, Y., Zhang, H. and Chu, H. 2021. Effect of long-term fertilization on bacterial communities in wheat endosphere. Pedosphere 31:538-548.
  86. Zhang, X.-F., She, M.-Z., Li, H.-Y., Jing, S., Jiang, H.-N., Gao, H., Zhu, Y.-X. and Fu, J.-J. 2021. Growth promotion mechanisms of Flavobacterium succinicans and their physiological regulation on the growth and stress tolerance in Lolium perenne. Acta Bot. Sin. 29:1704-1711.
  87. Zhu, L., Wang, S., Duan, H. and Lu, X. 2021. Foliar pathogen-induced assemblage of beneficial rhizosphere consortia increases plant defense against Setosphaeria turcica. Front. Biosci. 26:543-555.