DOI QR코드

DOI QR Code

Antioxidant Systems of Plant Pathogenic Fungi: Functions in Oxidative Stress Response and Their Regulatory Mechanisms

  • Jiyeun Park (Department of Agricultural Biotechnology, Seoul National University) ;
  • Hokyoung Son (Department of Agricultural Biotechnology, Seoul National University)
  • Received : 2024.01.02
  • Accepted : 2024.03.23
  • Published : 2024.06.01

Abstract

During the infection process, plant pathogenic fungi encounter plant-derived oxidative stress, and an appropriate response to this stress is crucial to their survival and establishment of the disease. Plant pathogenic fungi have evolved several mechanisms to eliminate oxidants from the external environment and maintain cellular redox homeostasis. When oxidative stress is perceived, various signaling transduction pathways are triggered and activate the downstream genes responsible for the oxidative stress response. Despite extensive research on antioxidant systems and their regulatory mechanisms in plant pathogenic fungi, the specific functions of individual antioxidants and their impacts on pathogenicity have not recently been systematically summarized. Therefore, our objective is to consolidate previous research on the antioxidant systems of plant pathogenic fungi. In this review, we explore the plant immune responses during fungal infection, with a focus on the generation and function of reactive oxygen species. Furthermore, we delve into the three antioxidant systems, summarizing their functions and regulatory mechanisms involved in oxidative stress response. This comprehensive review provides an integrated overview of the antioxidant mechanisms within plant pathogenic fungi, revealing how the oxidative stress response contributes to their pathogenicity.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (2021R1C1C1004200).

References

  1. Adam, A. L., Kohut, G. and Hornok, L. 2008. Fphog1, a HOG-type MAP kinase gene, is involved in multistress response in Fusarium proliferatum. J Basic Microbiol. 48:151-159. https://doi.org/10.1002/jobm.200700403
  2. Angel, P., Allegretto, E. A., Okino, S. T., Hattori, K., Boyle, W. J., Hunter, T. and Karin, M. 1988. Oncogene jun encodes a sequence-specific trans-activator similar to AP-1. Nature 332:166-171. https://doi.org/10.1038/332166a0
  3. Angelova, P. R. and Abramov, A. Y. 2018. Role of mitochondrial ROS in the brain: from physiology to neurodegeneration. FEBS Lett. 592:692-702. https://doi.org/10.1002/1873-3468.12964
  4. Avery, S. V. 2001. Metal toxicity in yeasts and the role of oxidative stress. Adv. Appl. Microbiol. 49:111-142. https://doi.org/10.1016/S0065-2164(01)49011-3
  5. Avery, S. V. 2011. Molecular targets of oxidative stress. Biochem. J. 434:201-210. https://doi.org/10.1042/BJ20101695
  6. Bahn, Y.-S. 2008. Master and commander in fungal pathogens: the two-component system and the HOG signaling pathway. Eukaryot. Cell 7:2017-2036. https://doi.org/10.1128/EC.00323-08
  7. Baker, R. D., Cook, C. O. and Goodwin, D. C. 2006. Catalase-peroxidase active site restructuring by a distant and "inactive" domain. Biochemistry 45:7113-7121. https://doi.org/10.1021/bi052392y
  8. Boller, T. and He, S. Y. 2009. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324:742-744. https://doi.org/10.1126/science.1171647
  9. Buck, V., Quinn, J., Pino, T. S., Martin, H., Saldanha, J., Makino, K., Morgan, B. A. and Millar, J. B. A. 2001. Peroxide sensors for the fission yeast stress-activated mitogen-activated protein kinase pathway. Mol. Biol. Cell 12:407-419. https://doi.org/10.1091/mbc.12.2.407
  10. Bussink, H.-J. and Oliver, R. 2001. Identification of two highly divergent catalase genes in the fungal tomato pathogen, Cladosporium fulvum. Eur. J. Biochem. 268:15-24. https://doi.org/10.1046/j.1432-1327.2001.01774.x
  11. Charizanis, C., Juhnke, H., Krems, B. and Entian, K.-D. 1999. The oxidative stress response mediated via Pos9/Skn7 is negatively regulated by the Ras/PKA pathway in Saccharomyces cerevisiae. Mol. Gen. Genet. 261:740-752. https://doi.org/10.1007/s004380050017
  12. Chelikani, P., Fita, I. and Loewen, P. C. 2004. Diversity of structures and properties among catalases. Cell. Mol. Life Sci. 61:192-208. https://doi.org/10.1007/s00018-003-3206-5
  13. Chen, L.-H., Lin, C.-H. and Chung, K.-R. 2012. Roles for SKN7 response regulator in stress resistance, conidiation and virulence in the citrus pathogen Alternaria alternata. Fungal Genet. Biol. 49:802-813.
  14. Chen, R. E. and Thorner, J. 2007. Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta 1773:1311-1340. https://doi.org/10.1016/j.bbamcr.2007.05.003
  15. Clempus, R. E. and Griendling, K. K. 2006. Reactive oxygen species signaling in vascular smooth muscle cells. Cardiovasc. Res. 71:216-225. https://doi.org/10.1016/j.cardiores.2006.02.033
  16. Couto, N., Wood, J. and Barber, J. 2016. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic. Biol. Med. 95:27-42. https://doi.org/10.1016/j.freeradbiomed.2016.02.028
  17. Cui, H., Tsuda, K. and Parker, J. E. 2015. Effector-triggered immunity: from pathogen perception to robust defense. Annu. Rev. Plant Biol. 66:487-511. https://doi.org/10.1146/annurev-arplant-050213-040012
  18. D'Autreaux, B. and Toledano, M. B. 2007. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8:813-824. https://doi.org/10.1038/nrm2256
  19. del Rio, L. A. and Lopez-Huertas, E. 2016. ROS generation in peroxisomes and its role in cell signaling. Plant Cell Physiol. 57:1364-1376.
  20. Delaunay, A., Isnard, A.-D. and Toledano, M. B. 2000. H2O2 sensing through oxidation of the Yap1 transcription factor. EMBO J. 19:5157-5166. https://doi.org/10.1093/emboj/19.19.5157
  21. Delaunay, A., Pflieger, D., Barrault, M.-B., Vinh, J. and Toledano, M. B. 2002. A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Cell 111:471-481. https://doi.org/10.1016/S0092-8674(02)01048-6
  22. Delledonne, M., Zeier, J., Marocco, A. and Lamb, C. 2001. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc. Natl. Acad. Sci. U. S. A. 98:13454-13459. https://doi.org/10.1073/pnas.231178298
  23. Fang, G.-C., Hanau, R. M. and Vaillancourt, L. J. 2002. The SOD2 gene, encoding a manganese-type superoxide dismutase, is up-regulated during conidiogenesis in the plant-pathogenic fungus Colletotrichum graminicola. Fungal Genet. Biol. 36:155-165.
  24. Fang, Y., Xiong, D., Tian, L., Tang, C., Wang, Y. and Tian, C. 2017. Functional characterization of two bZIP transcription factors in Verticillium dahliae. Gene 626:386-394. https://doi.org/10.1016/j.gene.2017.05.061
  25. Fassler, J. S. and West, A. H. 2011. Fungal Skn7 stress responses and their relationship to virulence. Eukaryot. Cell 10:156-167. https://doi.org/10.1128/EC.00245-10
  26. Feng, H., Xu, M., Gao, Y., Liang, J., Guo, F., Guo, Y. and Huang, L. 2021. Vm-milR37 contributes to pathogenicity by regulating glutathione peroxidase gene VmGP in Valsa mali. Mol. Plant Pathol. 22:243-254. https://doi.org/10.1111/mpp.13023
  27. Fernandez, J. and Wilson, R. A. 2014. Characterizing roles for the glutathione reductase, thioredoxin reductase and thioredoxin peroxidase-encoding genes of Magnaporthe oryzae during rice blast disease. PLoS ONE 9:e87300.
  28. Fraaije, M. W., Roubroeks, H. P., Hagen, W. R. and Van Berkel, W. J. 1996. Purification and characterization of an intracellular catalase-peroxidase from Penicillium simplicissimum. Eur. J. Biochem. 235:192-198. https://doi.org/10.1111/j.1432-1033.1996.00192.x
  29. Fridovich, I. 1986. Superoxide dismutases. Adv. Enzymol. Relat. Areas Mol. Biol. 58:61-97. 
  30. Gacto, M., Soto, T., Vicente-Soler, J., Villa, T. G. and Cansado, J. 2003. Learning from yeasts: intracellular sensing of stress conditions. Int. Microbiol. 6:211-219. https://doi.org/10.1007/s10123-003-0136-x
  31. Gao, S., Gold, S. E. and Glenn, A. E. 2018. Characterization of two catalase-peroxidase-encoding genes in Fusarium verticillioides reveals differential responses to in vitro versus in planta oxidative challenges. Mol. Plant Pathol. 19:1127-1139. https://doi.org/10.1111/mpp.12591
  32. Garcia-Caparros, P., De Filippis, L., Gul, A., Hasanuzzaman, M., Ozturk, M., Altay, V. and Lao, M. T. 2021. Oxidative stress and antioxidant metabolism under adverse environmental conditions: a review. Bot. Rev. 87:421-466. https://doi.org/10.1007/s12229-020-09231-1
  33. Gullner, G. and Komives, T. 2001. The role of glutathione and glutathione-related enzymes in plant-pathogen interactions. In: Significance of glutathione to plant adaptation to the environment, eds. by D. Grill, M. Tausz and L. J. De Kok, pp. 207-239. Kluwer Academic Publishers, Dordrecht, Germany.
  34. Guo, M., Chen, Y., Du, Y., Dong, Y., Guo, W., Zhai, S., Zhang, H., Dong, S., Zhang, Z., Wang, Y., Wang, P. and Zheng, X. 2011. The bZIP transcription factor MoAP1 mediates the oxidative stress response and is critical for pathogenicity of the rice blast fungus Magnaporthe oryzae. PLoS Pathog. 7:e1001302.
  35. Guo, Y., Yao, S., Yuan, T., Wang, Y., Zhang, D. and Tang, W. 2019. The spatiotemporal control of KatG2 catalase-peroxidase contributes to the invasiveness of Fusarium graminearum in host plants. Mol. Plant Pathol. 20:685-700. https://doi.org/10.1111/mpp.12785
  36. Hansberg, W., Salas-Lizana, R. and Dominguez, L. 2012. Fungal catalases: function, phylogenetic origin and structure. Arch. Biochem. Biophys. 525:170-180. https://doi.org/10.1016/j.abb.2012.05.014
  37. He, X.-J., Mulford, K. E. and Fassler, J. S. 2009. Oxidative stress function of the Saccharomyces cerevisiae Skn7 receiver domain. Eukaryot. Cell 8:768-778. https://doi.org/10.1128/EC.00021-09
  38. Hohmann, S. 2002. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol. Rev. 66:300-372. https://doi.org/10.1128/MMBR.66.2.300-372.2002
  39. Huang, K., Czymmek, K. J., Caplan, J. L., Sweigard, J. A. and Donofrio, N. M. 2011. HYR1-mediated detoxification of reactive oxygen species is required for full virulence in the rice blast fungus. PLoS Pathog. 7:e1001335.
  40. Huang, Z., Lu, J., Liu, R., Wang, P., Hu, Y., Fang, A., Yang, Y., Qing, L., Bi, C. and Yu, Y. 2021. SsCat2 encodes a catalase that is critical for the antioxidant response, QoI fungicide sensitivity, and pathogenicity of Sclerotinia sclerotiorum. Fungal Genet. Biol. 149:103530.
  41. Ikner, A. and Shiozaki, K. 2005. Yeast signaling pathways in the oxidative stress response. Mutat Res. 569: 13-27. https://doi.org/10.1016/j.mrfmmm.2004.09.006
  42. Irieda, H., Inoue, Y., Mori, M., Yamada, K., Oshikawa, Y., Saitoh, H., Uemura, A., Terauchi, R., Kitakura, S., Kosaka, A., Singkaravanit-Ogawa, S. and Takano, Y. 2019. Conserved fungal effector suppresses PAMP-triggered immunity by targeting plant immune kinases. Proc. Natl. Acad. Sci. U. S. A. 116:496-505. https://doi.org/10.1073/pnas.1807297116
  43. Jiang, C., Zhang, S., Zhang, Q., Tao, Y., Wang, C. and Xu, J.-R. 2015. FgSKN7 and FgATF1 have overlapping functions in ascosporogenesis, pathogenesis and stress responses in Fusarium graminearum. Environ. Microbiol. 17:1245-1260. https://doi.org/10.1111/1462-2920.12561
  44. Jones, J. D. G. and Dangl, J. L. 2006. The plant immune system. Nature 444:323-329. https://doi.org/10.1038/nature05286
  45. Kadota, Y., Liebrand, T. W. H., Goto, Y., Sklenar, J., Derbyshire, P., Menke, F. L. H., Torres, M.-A., Molina, A., Zipfel, C., Coaker, G. and Shirasu, K. 2019. Quantitative phosphoproteomic analysis reveals common regulatory mechanisms between effector- and PAMP-triggered immunity in plants. New Phytol. 221:2160-2175. https://doi.org/10.1111/nph.15523
  46. Kadota, Y., Shirasu, K. and Zipfel, C. 2015. Regulation of the NADPH oxidase RBOHD during plant immunity. Plant Cell Physiol. 56:1472-1480.
  47. Kadota, Y., Sklenar, J., Derbyshire, P., Stransfeld, L., Asai, S., Ntoukakis, V., Jones, J. D., Shirasu, K., Menke, F., Jones, A. and Zipfel, C. 2014. Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Mol. Cell 54:43-55. https://doi.org/10.1016/j.molcel.2014.02.021
  48. Kaku, H., Nishizawa, Y., Ishii-Minami, N., Akimoto-Tomiyama, C., Dohmae, N., Takio, K., Minami, E. and Shibuya, N. 2006. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc. Natl. Acad. Sci. U. S. A. 103:11086-11091. https://doi.org/10.1073/pnas.0508882103
  49. Kaserer, A. O., Andi, B., Cook, P. F. and West, A. H. 2009. Effects of osmolytes on the SLN1-YPD1-SSK1 phosphorelay system from Saccharomyces cerevisiae. Biochemistry 48:8044-8050. https://doi.org/10.1021/bi900886g
  50. Kinseth, M. A., Anjard, C., Fuller, D., Guizzunti, G., Loomis, W. F. and Malhotra, V. 2007. The Golgi-associated protein GRASP is required for unconventional protein secretion during development. Cell 130:524-534. https://doi.org/10.1016/j.cell.2007.06.029
  51. Kuge, S., Jones, N. and Nomoto, A. 1997. Regulation of yAP-1 nuclear localization in response to oxidative stress. EMBO J. 16:1710-1720. https://doi.org/10.1093/emboj/16.7.1710
  52. Lawrence, C. L., Maekawa, H., Worthington, J. L., Reiter, W., Wilkinson, C. R. M. and Jones, N. 2007. Regulation of Schizosaccharomyces pombe Atf1 protein levels by Sty1-mediated phosphorylation and heterodimerization with Pcr1. J. Biol. Chem. 282:5160-5170. https://doi.org/10.1074/jbc.M608526200
  53. Lee, C. G., Da Silva, C. A., Lee, J.-Y., Hartl, D. and Elias, J. A. 2008. Chitin regulation of immune responses: an old molecule with new roles. Curr. Opin. Immunol. 20:684-689. https://doi.org/10.1016/j.coi.2008.10.002
  54. Lee, Y., Min, K., Son, H., Park, A. R., Kim, J.-C., Choi, G. J. and Lee, Y.-W. 2014. ELP3 is involved in sexual and asexual development, virulence, and the oxidative stress response in Fusarium graminearum. Mol. Plant-Microbe Interact. 27:1344-1355. https://doi.org/10.1094/MPMI-05-14-0145-R
  55. Lee, Y., Son, H., Shin, J. Y., Choi, G. J. and Lee, Y.-W. 2018. Genome-wide functional characterization of putative peroxidases in the head blight fungus Fusarium graminearum. Mol. Plant Pathol. 19:715-730. https://doi.org/10.1111/mpp.12557
  56. Lev, S., Hadar, R., Amedeo, P., Baker, S. E., Yoder, O. C. and Horwitz, B. A. 2005. Activation of an AP1-like transcription factor of the maize pathogen Cochliobolus heterostrophus in response to oxidative stress and plant signals. Eukaryot. Cell 4:443-454. https://doi.org/10.1128/EC.4.2.443-454.2005
  57. Levin, D. E. 2011. Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics 189:1145-1175. https://doi.org/10.1534/genetics.111.128264
  58. Levin, D. E. 2005. Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 69:262-291. https://doi.org/10.1128/MMBR.69.2.262-291.2005
  59. Li, J., Zhang, Z.-G., Ji, R., Wang, Y.-C. and Zheng, X.-B. 2005. Hydrogen peroxide regulates elicitor PB90-induced cell death and defense in non-heading Chinese cabbage. Physiol. Mol. Plant Pathol. 67:220-230. https://doi.org/10.1016/j.pmpp.2006.02.002
  60. Li, S., Dean, S., Li, Z., Horecka, J., Deschenes, R. J. and Fassler, J. S. 2002. The eukaryotic two-component histidine kinase Sln1p regulates OCH1 via the transcription factor, Skn7p. Mol. Biol. Cell 13:412-424. https://doi.org/10.1091/mbc.01-09-0434
  61. Li, T., Huang, C.-M., Zhang, D.-D., Li, R., Chen, J.-Y., Sun, W.-X., Qiu, N.-W. and Dai, X.-F. 2021. Extracellular superoxide dismutase VdSOD5 is required for virulence in Verticillium dahliae. J. Integr. Agric. 20:1858-1870. https://doi.org/10.1016/S2095-3119(20)63353-6
  62. Li, X., Wu, Y., Liu, Z. and Zhang, C. 2017. The function and transcriptome analysis of a bZIP transcription factor CgAP1 in Colletotrichum gloeosporioides. Microbiol. Res. 197:39-48. https://doi.org/10.1016/j.micres.2017.01.006
  63. Lin, C.-H. and Chung, K.-R. 2010. Specialized and shared functions of the histidine kinase- and HOG1 MAP kinase-mediated signaling pathways in Alternaria alternata, a filamentous fungal pathogen of citrus. Fungal Genet. Biol. 47:818-827. https://doi.org/10.1016/j.fgb.2010.06.009
  64. Lin, C.-H., Yang, S. L. and Chung, K.-R. 2009. The YAP1 homolog-mediated oxidative stress tolerance is crucial for pathogenicity of the necrotrophic fungus Alternaria alternata in citrus. Mol. Plant-Microbe Interact. 22:942-952. https://doi.org/10.1094/MPMI-22-8-0942
  65. Lin, C.-H., Yang, S. L. and Chung, K.-R. 2011. Cellular responses required for oxidative stress tolerance, colonization, and lesion formation by the necrotrophic fungus Alternaria alternata in citrus. Curr. Microbiol. 62:807-815. https://doi.org/10.1007/s00284-010-9795-y
  66. Liu, J., Guan, T., Zheng, P., Chen, L., Yang, Y., Huai, B., Li, D., Chang, Q., Huang, L. and Kang, Z. 2016. An extracellular Zn-only superoxide dismutase from Puccinia striiformis confers enhanced resistance to host-derived oxidative stress. Environ. Microbiol. 18:4118-4135. https://doi.org/10.1111/1462-2920.13451
  67. Liu, X., Zhou, Q., Guo, Z., Liu, P., Shen, L., Chai, N., Qian, B., Cai, Y., Wang, W., Yin, Z., Zhang, H., Zheng, X. and Zhang, Z. 2020. A self-balancing circuit centered on MoOsm1 kinase governs adaptive responses to host-derived ROS in Magnaporthe oryzae. eLife 9:e61605.
  68. Lopez-Cruz, J., Oscar, C.-S., Emma, F.-C., Pilar, G.-A. and Carmen, G.-B. 2017. Absence of Cu-Zn superoxide dismutase BCSOD1 reduces Botrytis cinerea virulence in Arabidopsis and tomato plants, revealing interplay among reactive oxygen species, callose and signalling pathways. Mol. Plant Pathol. 18:16-31. https://doi.org/10.1111/mpp.12370
  69. Ma, H., Wang, M., Gai, Y., Fu, H., Zhang, B., Ruan, R., Chung, K.-R. and Li, H. 2018. Thioredoxin and glutaredoxin systems required for oxidative stress resistance, fungicide sensitivity, and virulence of Alternaria alternata. Appl. Environ. Microbiol. 84:e00086-18.
  70. Macia, J., Regot, S., Peeters, T., Conde, N., Sole, R. and Posas, F. 2009. Dynamic signaling in the Hog1 MAPK pathway relies on high basal signal transduction. Sci. Signal 2:ra13.
  71. Marcec, M. J., Gilroy, S., Poovaiah, B. W. and Tanaka, K. 2019. Mutual interplay of Ca2+ and ROS signaling in plant immune response. Plant Sci. 283:343-354. https://doi.org/10.1016/j.plantsci.2019.03.004
  72. McCord, J. M. and Fridovich, I. 1969. Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244:6049-6055. https://doi.org/10.1016/S0021-9258(18)63504-5
  73. McCubrey, J. A., LaHair, M. M. and Franklin, R. A. 2006. Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxid. Redox Signal. 8:1775-1789. https://doi.org/10.1089/ars.2006.8.1775
  74. Meister, A. and Anderson, M. E. 1983. Glutathione. Annu. Rev. Biochem. 52:711-760. https://doi.org/10.1146/annurev.bi.52.070183.003431
  75. Miller, A.-F. 2012. Superoxide dismutases: ancient enzymes and new insights. FEBS Lett. 586:585-595. https://doi.org/10.1016/j.febslet.2011.10.048
  76. Mir, A. A., Park, S.-Y., Sadat, M. A., Kim, S., Choi, J., Jeon, J. and Lee, Y.-H. 2015. Systematic characterization of the peroxidase gene family provides new insights into fungal pathogenicity in Magnaporthe oryzae. Sci. Rep. 5:11831.
  77. Mittler, R., Vanderauwera, S., Suzuki, N., Miller, G., Tognetti, V. B., Vandepoele, K., Gollery, M., Shulaev, V. and Van Breusegem, F. 2011. ROS signaling: the new wave? Trends Plant Sci. 16:300-309. https://doi.org/10.1016/j.tplants.2011.03.007
  78. Molina, L. and Kahmann, R. 2007. An Ustilago maydis gene involved in H2O2 detoxification is required for virulence. Plant Cell 19:2293-2309.
  79. Montibus, M., Ducos, C., Bonnin-Verdal, M.-N., Bormann, J., Ponts, N., Richard-Forget, F. and Barreau, C. 2013. The bZIP transcription factor Fgap1 mediates oxidative stress response and trichothecene biosynthesis but not virulence in Fusarium graminearum. PLoS ONE 8:e83377.
  80. Moore, S., De Vries, O. M. H. and Tudzynski, P. 2002. The major Cu,Zn SOD of the phytopathogen Claviceps purpurea is not essential for pathogenicity. Mol. Plant Pathol. 3:9-22. https://doi.org/10.1046/j.1464-6722.2001.00088.x
  81. Morgan, B. A., Banks, G. R., Toone, W. M., Raitt, D., Kuge, S. and Johnston, L. H. 1997. The Skn7 response regulator controls gene expression in the oxidative stress response of the budding yeast Saccharomyces cerevisiae. EMBO J. 16:1035-1044. https://doi.org/10.1093/emboj/16.5.1035
  82. Moriwaki, A., Kubo, E., Arase, S. and Kihara, J. 2006. Disruption of SRM1, a mitogen-activated protein kinase gene, affects sensitivity to osmotic and ultraviolet stressors in the phytopathogenic fungus Bipolaris oryzae. FEMS Microbiol. Lett. 257:253-261. https://doi.org/10.1111/j.1574-6968.2006.00178.x
  83. Mulford, K. E. and Fassler, J. S. 2011. Association of the Skn7 and Yap1 transcription factors in the Saccharomyces cerevisiae oxidative stress response. Eukaryot. Cell 10:761-769. https://doi.org/10.1128/EC.00328-10
  84. Nathues, E., Joshi, S., Tenberge, K. B., von den Driesch, M., Oeser, B., Baumer, N., Mihlan, M. and Tudzynski, P. 2004. CPTF1, a CREB-like transcription factor, is involved in the oxidative stress response in the phytopathogen Claviceps purpurea and modulates ROS level in its host Secale cereale. Mol. Plant-Microbe Interact. 17:383-393. https://doi.org/10.1094/MPMI.2004.17.4.383
  85. Ngou, B. P. M., Ding, P. and Jones, J. D. G. 2022. Thirty years of resistance: zig-zag through the plant immune system. Plant Cell 34:1447-1478.
  86. Nguyen, T. V., Schafer, W. and Bormann, J. 2012. The stress-activated protein kinase FgOS-2 is a key regulator in the life cycle of the cereal pathogen Fusarium graminearum. Mol. Plant-Microbe Interact. 25:1142-1156. https://doi.org/10.1094/MPMI-02-12-0047-R
  87. Nicholls, P. 2012. Classical catalase: ancient and modern. Arch. Biochem. Biophys. 525:95-101. https://doi.org/10.1016/j.abb.2012.01.015
  88. Nickel, W. 2003. The mystery of nonclassical protein secretion: a current view on cargo proteins and potential export. Eur. J. Biochem. 270:2109-2119. https://doi.org/10.1046/j.1432-1033.2003.03577.x
  89. O'Rourke, S. M. and Herskowitz, I. 2004. Unique and redundant roles for HOG MAPK pathway components as revealed by whole-genome expression analysis. Mol. Biol. Cell 15:532-542. https://doi.org/10.1091/mbc.e03-07-0521
  90. Park, J., Han, J. W., Lee, N., Kim, S., Choi, S., Lee, H.-H., Kim, J.-E., Seo, Y.-S., Choi, G. J., Lee, Y.-W., Kim, H. and Son, H. 2024. Sulfur metabolism-mediated fungal glutathione biosynthesis is essential for oxidative stress resistance and pathogenicity in the plant pathogenic fungus Fusarium graminearum. mBio 15:e0240123.
  91. Park, J., Lee, H.-H., Moon, H., Lee, N., Kim, S., Kim, J.-E., Lee, Y., Min, K., Kim, H., Choi, G. J., Lee, Y.-W., Seo, Y.-S. and Son, H. 2023. A combined transcriptomic and physiological approach to understanding the adaptive mechanisms to cope with oxidative stress in Fusarium graminearum. Microbiol. Spectr. 11:e0148523.
  92. Peng, Y., van Wersch, R. and Zhang, Y. 2018. Convergent and divergent signaling in PAMP-triggered immunity and effector-triggered immunity. Mol. Plant-Microbe Interact. 31:403-409. https://doi.org/10.1094/MPMI-06-17-0145-CR
  93. Posas, F., Wurgler-Murphy, S. M., Maeda, T., Witten, E. A., Thai, T. C. and Saito, H. 1996. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 "two-component" osmosensor. Cell 86:865-875. https://doi.org/10.1016/S0092-8674(00)80162-2
  94. Qi, M. and Elion, E. A. 2005. MAP kinase pathways. J. Cell. Sci. 118:3569-3572. https://doi.org/10.1242/jcs.02470
  95. Qi, X., Guo, L., Yang, L. and Huang, J. 2013. Foatf1, a bZIP transcription factor of Fusarium oxysporum f. sp. cubense, is involved in pathogenesis by regulating the oxidative stress responses of Cavendish banana (Musa spp.). Physiol. Mol. Plant Pathol. 84:76-85. https://doi.org/10.1016/j.pmpp.2013.07.007
  96. Quinn, J., Findlay, V. J., Dawson, K., Millar, J. B. A., Jones, N., Morgan, B. A. and Toone, W. M. 2002. Distinct regulatory proteins control the graded transcriptional response to increasing H2O2 levels in fission yeast Schizosaccharomyces pombe. Mol. Biol. Cell 13:805-816. https://doi.org/10.1091/mbc.01-06-0288
  97. Raffaello, T., Kerio, S. and Asiegbu, F. O. 2012. Role of the HaHOG1 MAP kinase in response of the conifer root and but rot pathogen (Heterobasidion annosum) to osmotic and oxidative stress. PLoS ONE 7:e31186.
  98. Reczek, C. R. and Chandel, N. S. 2015. ROS-dependent signal transduction. Curr. Opin. Cell Biol. 33:8-13. https://doi.org/10.1016/j.ceb.2014.09.010
  99. Rep, M., Proft, M., Remize, F., Tamas, M., Serrano, R., Thevelein, J. M. and Hohmann, S. 2001. The Saccharomyces cerevisiae Sko1p transcription factor mediates HOG pathway-dependent osmotic regulation of a set of genes encoding enzymes implicated in protection from oxidative damage. Mol. Microbiol. 40:1067-1083. https://doi.org/10.1046/j.1365-2958.2001.02384.x
  100. Robbertse, B., Yoder, O. C., Nguyen, A., Schoch, C. L. and Turgeon, B. G. 2003. Deletion of all Cochliobolus heterostrophus monofunctional catalase-encoding genes reveals a role for one in sensitivity to oxidative stress but none with a role in virulence. Mol. Plant-Microbe Interact. 16:1013-1021. https://doi.org/10.1094/MPMI.2003.16.11.1013
  101. Sagi, M. and Fluhr, R. 2006. Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol. 141:336-340. https://doi.org/10.1104/pp.106.078089
  102. Salat-Canela, C., Paulo, E., Sanchez-Mir, L., Carmona, M., Ayte, J., Oliva, B. and Hidalgo, E. 2017. Deciphering the role of the signal- and Sty1 kinase-dependent phosphorylation of the stress-responsive transcription factor Atf1 on gene activation. J. Biol. Chem. 292:13635-13644. https://doi.org/10.1074/jbc.M117.794339
  103. Sanabria, N. M., Huang, J.-C. and Dubery, I. A. 2010. Self/nonself perception in plants in innate immunity and defense. Self Nonself 1:40-54. https://doi.org/10.4161/self.1.1.10442
  104. Santos-Sanchez, N. F., Salas-Coronado, R., Villanueva-Canongo, C. and Hernandez-Carlos, B. 2019. Antioxidant compounds and their antioxidant mechanism. In: Antioxidants, ed. by E. Shalaby, pp. 1-28. IntechOpen, London, UK.
  105. Schieber, M. and Chandel, N. S. 2014. ROS function in redox signaling and oxidative stress. Curr. Biol. 24:R453-R462. https://doi.org/10.1016/j.cub.2014.03.034
  106. Schouten, A., Tenberge, K. B., Vermeer, J., Stewart, J., Wagemakers, L., Williamson, B. and Van Kan, J. A. L. 2002. Functional analysis of an extracellular catalase of Botrytis cinerea. Mol. Plant Pathol. 3:227-238. https://doi.org/10.1046/j.1364-3703.2002.00114.x
  107. Schreiber, K. J., Chau-Ly, I. J. and Lewis, J. D. 2021. What the wild things do: mechanisms of plant host manipulation by bacterial type III-secreted effector proteins. Microorganisms 9:1029.
  108. Schwessinger, B. and Zipfel, C. 2008. News from the frontline: recent insights into PAMP-triggered immunity in plants. Curr. Opin. Plant Biol. 11:389-395. https://doi.org/10.1016/j.pbi.2008.06.001
  109. Seger, R. and Krebs, E. G. 1995. The MAPK signaling cascade. FASEB J. 9:726-735. https://doi.org/10.1096/fasebj.9.9.7601337
  110. Segmuller, N., Ellendorf, U., Tudzynski, B. and Tudzynski, P. 2007. BcSAK1, a stress-activated mitogen-activated protein kinase, is involved in vegetative differentiation and pathogenicity in Botrytis cinerea. Eukaryot. Cell 6:211-221. https://doi.org/10.1128/EC.00153-06
  111. Shalaby, S., Larkov, O., Lamdan, N. L. and Horwitz, B. A. 2014. Genetic interaction of the stress response factors ChAP1 and Skn7 in the maize pathogen Cochliobolus heterostrophus. FEMS Microbiol. Lett. 350:83-89. https://doi.org/10.1111/1574-6968.12314
  112. Skamnioti, P., Henderson, C., Zhang, Z., Robinson, Z. and Gurr, S. J. 2007. A novel role for catalase B in the maintenance of fungal cell-wall integrity during host invasion in the rice blast fungus Magnaporthe grisea. Mol. Plant-Microbe Interact. 20:568-580. https://doi.org/10.1094/MPMI-20-5-0568
  113. Smith, D. A., Morgan, B. A. and Quinn, J. 2010. Stress signalling to fungal stress-activated protein kinase pathways. FEMS Microbiol. Lett. 306:1-8. https://doi.org/10.1111/j.1574-6968.2010.01937.x
  114. Snelders, N. C., Rovenich, H., Petti, G. C., Rocafort, M., van den Berg, G. C. M., Vorholt, J. A., Mesters, J. R., Seidl, M. F., Nijland, R. and Thomma, B. P. H. J. 2020. Microbiome manipulation by a soil-borne fungal plant pathogen using effector proteins. Nat. Plants 6:1365-1374. https://doi.org/10.1038/s41477-020-00799-5
  115. Son, Y., Cheong, Y.-K., Kim, N.-H., Chung, H.-T., Kang, D. G. and Pae, H.-O. 2011. Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways? J. Signal Transduct. 2011:792639.
  116. Srinivas, U. S., Tan, B. W., Vellayappan, B. A. and Jeyasekharan, A. D. 2019. ROS and the DNA damage response in cancer. Redox Biol. 25:101084.
  117. Stadtman, E. R. and Levine, R. L. 2000. Protein oxidation. Ann. N. Y. Acad. Sci. 899:191-208. https://doi.org/10.1111/j.1749-6632.2000.tb06187.x
  118. Sun, Y., Wang, Y. and Tian, C. 2016. bZIP transcription factor CgAP1 is essential for oxidative stress tolerance and full virulence of the poplar anthracnose fungus Colletotrichum gloeosporioides. Fungal Genet. Biol. 95:58-66. https://doi.org/10.1016/j.fgb.2016.08.006
  119. Suzuki, N., Miller, G., Morales, J., Shulaev, V., Torres, M. A. and Mittler, R. 2011. Respiratory burst oxidases: the engines of ROS signaling. Curr. Opin. Plant Biol. 14:691-699. https://doi.org/10.1016/j.pbi.2011.07.014
  120. Szabo, Z., Pakozdi, K., Murvai, K., Pusztahelyi, T., Kecskemeti, A., Gaspar, A., Logrieco, A. F., Emri, T., Adam, A. L., Leiter, E., Hornok, L. and Pocsi, I. 2020. FvatfA regulates growth, stress tolerance as well as mycotoxin and pigment productions in Fusarium verticillioides. Appl. Microbiol. Biotechnol. 104:7879-7899. https://doi.org/10.1007/s00253-020-10717-6
  121. Tanabe, S., Ishii-Minami, N., Saitoh, K.-I., Otake, Y., Kaku, H., Shibuya, N., Nishizawa, Y. and Minami, E. 2011. The role of catalase-peroxidase secreted by Magnaporthe oryzae during early infection of rice cells. Mol. Plant-Microbe Interact. 24:163-171. https://doi.org/10.1094/MPMI-07-10-0175
  122. Tanabe, S., Nishizawa, Y. and Minami, E. 2009. Effects of catalase on the accumulation of H2O2 in rice cells inoculated with rice blast fungus, Magnaporthe oryzae. Physiol. Plant. 137:148-154. https://doi.org/10.1111/j.1399-3054.2009.01272.x
  123. Tang, C., Xiong, D., Fang, Y., Tian, C. and Wang, Y. 2017. The two-component response regulator VdSkn7 plays key roles in microsclerotial development, stress resistance and virulence of Verticillium dahliae. Fungal Genet. Biol. 108:26-35. https://doi.org/10.1016/j.fgb.2017.09.002
  124. Temme, N. and Tudzynski, P. 2009. Does Botrytis cinerea ignore H2O2-induced oxidative stress during infection? Characterization of Botrytis activator protein 1. Mol. Plant-Microbe Interact. 22:987-998. https://doi.org/10.1094/MPMI-22-8-0987
  125. Tena, G., Boudsocq, M. and Sheen, J. 2011. Protein kinase signaling networks in plant innate immunity. Curr. Opin. Plant Biol. 14:519-529. https://doi.org/10.1016/j.pbi.2011.05.006
  126. Tian, L., Li, J., Huang, C., Zhang, D., Xu, Y., Yang, X., Song, J., Wang, D., Qiu, N., Short, D. P. G., Inderbitzin, P., Subbarao, K. V., Chen, J. and Dai, X. 2021a. Cu/Zn superoxide dismutase (VdSOD1) mediates reactive oxygen species detoxification and modulates virulence in Verticillium dahliae. Mol. Plant Pathol. 22:1092-1108.
  127. Tian, L., Sun, W., Li, J., Chen, J., Dai, X., Qiu, N. and Zhang, D. 2021b. Unconventionally secreted manganese superoxide dismutase VdSOD3 is required for the virulence of Verticillium dahliae. Agronomy 11:13.
  128. Toone, W. M. and Jones, N. 1999. AP-1 transcription factors in yeast. Curr. Opin. Genet. Dev. 9:55-61. https://doi.org/10.1016/S0959-437X(99)80008-2
  129. Toone, W. M., Morgan, B. A. and Jones, N. 2001. Redox control of AP-1-like factors in yeast and beyond. Oncogene 20:2336-2346. https://doi.org/10.1038/sj.onc.1204384
  130. Torres, M. A. 2010. ROS in biotic interactions. Physiol Plant. 138: 414-429. https://doi.org/10.1111/j.1399-3054.2009.01326.x
  131. Torres, M. A., Jones, J. D. G. and Dangl, J. L. 2006. Reactive oxygen species signaling in response to pathogens. Plant Physiol. 141:373-378.
  132. Tsuda, K. and Katagiri, F. 2010. Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Curr. Opin. Plant Biol. 13:459-465. https://doi.org/10.1016/j.pbi.2010.04.006
  133. Van Nguyen, T., Kroger, C., Bonnighausen, J., Schafer, W. and Bormann, J. 2013. The ATF/CREB transcription factor Atf1 is essential for full virulence, deoxynivalenol production, and stress tolerance in the cereal pathogen Fusarium graminearum. Mol. Plant-Microbe Interact. 26:1378-1394. https://doi.org/10.1094/MPMI-04-13-0125-R
  134. Veluchamy, S., Williams, B., Kim, K. and Dickman, M. B. 2012. The CuZn superoxide dismutase from Sclerotinia sclerotiorum is involved with oxidative stress tolerance, virulence, and oxalate production. Physiol. Mol. Plant Pathol. 78:14-23. https://doi.org/10.1016/j.pmpp.2011.12.005
  135. Viefhues, A., Schlathoelter, I., Simon, A., Viaud, M. and Tudzynski, P. 2015. Unraveling the function of the response regulator BcSkn7 in the stress signaling network of Botrytis cinerea. Eukaryot. Cell 14:636-651. https://doi.org/10.1128/EC.00043-15
  136. Vivancos, A. P., Jara, M., Zuin, A., Sanso, M. and Hidalgo, E. 2006. Oxidative stress in Schizosaccharomyces pombe: different H2O2 levels, different response pathways. Mol. Genet. Genomics 276: 495-502. https://doi.org/10.1007/s00438-006-0175-z
  137. Wang, Q., Pokhrel, A. and Coleman, J. J. 2021. The extracellular superoxide dismutase Sod5 from Fusarium oxysporum is localized in response to external stimuli and contributes to fungal pathogenicity. Front. Plant Sci. 12:608861.
  138. Wang, W. and Jiao, F. 2019. Effectors of Phytophthora pathogens are powerful weapons for manipulating host immunity. Planta 250:413-425. https://doi.org/10.1007/s00425-019-03219-x
  139. Wendel, A. 1980. Glutathione peroxidase. Methods Enzymol. 77:325-333. https://doi.org/10.1016/S0076-6879(81)77046-0
  140. Whittaker, J. W. 2012. Non-heme manganese catalase: the 'other' catalase. Arch. Biochem. Biophys. 525:111-120. https://doi.org/10.1016/j.abb.2011.12.008
  141. Wilkinson, M. G., Samuels, M., Takeda, T., Toone, W. M., Shieh, J.-C., Toda, T., Millar, J. B. and Jones, N. 1996. The Atf1 transcription factor is a target for the Sty1 stress-activated MAP kinase pathway in fission yeast. Genes Dev. 10:2289-2301. https://doi.org/10.1101/gad.10.18.2289
  142. Wood, M. J., Storz, G. and Tjandra, N. 2004. Structural basis for redox regulation of Yap1 transcription factor localization. Nature 430:917-921. https://doi.org/10.1038/nature02790
  143. Wullschleger, S., Loewith, R. and Hall, M. N. 2006. TOR signaling in growth and metabolism. Cell 124:471-484. https://doi.org/10.1016/j.cell.2006.01.016
  144. Yan, C., Lee, L. H. and Davis, L. I. 1998. Crm1p mediates regulated nuclear export of a yeast AP-1-like transcription factor. EMBO J. 17:7416-7429. https://doi.org/10.1093/emboj/17.24.7416
  145. Yang, Q., Yin, D., Yin, Y., Cao, Y. and Ma, Z. 2015. The response regulator BcSkn7 is required for vegetative differentiation and adaptation to oxidative and osmotic stresses in Botrytis cinerea. Mol. Plant Pathol. 16:276-287. https://doi.org/10.1111/mpp.12181
  146. Yang, S. L., Yu, P.-L. and Chung, K.-R. 2016. The glutathione peroxidase-mediated reactive oxygen species resistance, fungicide sensitivity and cell wall construction in the citrus fungal pathogen Alternaria alternata. Environ. Microbiol. 18:923-935. https://doi.org/10.1111/1462-2920.13125
  147. Yang, Y., Bazhin, A. V., Werner, J. and Karakhanova, S. 2013. Reactive oxygen species in the immune system. Int. Rev. Immunol. 32:249-270. https://doi.org/10.3109/08830185.2012.755176
  148. Yao, S.-H., Guo, Y., Wang, Y.-Z., Zhang, D., Xu, L. and Tang, W.-H. 2016. A cytoplasmic Cu-Zn superoxide dismutase SOD1 contributes to hyphal growth and virulence of Fusarium graminearum. Fungal Genet. Biol. 91:32-42. https://doi.org/10.1016/j.fgb.2016.03.006
  149. Yarden, O., Veluchamy, S., Dickman, M. B. and Kabbage, M. 2014. Sclerotinia sclerotiorum catalase SCAT1 affects oxidative stress tolerance, regulates ergosterol levels and controls pathogenic development. Physiol. Mol. Plant Pathol. 85:34-41. https://doi.org/10.1016/j.pmpp.2013.12.001
  150. Yu, P.-L., Wang, C.-L., Chen, P.-Y. and Lee, M.-H. 2017. YAP1 homologue-mediated redox sensing is crucial for a successful infection by Monilinia fructicola. Mol. Plant Pathol. 18:783-797. https://doi.org/10.1111/mpp.12438
  151. Yuan, M., Ngou, B. P. M., Ding, P. and Xin, X.-F. 2021a. PTIETI crosstalk: an integrative view of plant immunity. Curr. Opin. Plant Biol. 62:102030.
  152. Yuan, P., Qian, W., Jiang, L., Jia, C., Ma, X., Kang, Z. and Liu, J. 2021b. A secreted catalase contributes to Puccinia striiformis resistance to host-derived oxidative stress. Stress Biol. 1:22.
  153. Zamocky, M., Droghetti, E., Bellei, M., Gasselhuber, B., Pabst, M., Furtmuller, P. G., Battistuzzi, G., Smulevich, G. and Obinger, C. 2012a. Eukaryotic extracellular catalase-peroxidase from Magnaporthe grisea: biophysical/chemical characterization of the first representative from a novel phytopathogenic KatG group. Biochimie 94:673-683. https://doi.org/10.1016/j.biochi.2011.09.020
  154. Zamocky, M., Furtmuller, P. G., Bellei, M., Battistuzzi, G., Stadlmann, J., Vlasits, J. and Obinger, C. 2009a. Intracellular catalase/peroxidase from the phytopathogenic rice blast fungus Magnaporthe grisea: expression analysis and biochemical characterization of the recombinant protein. Biochem. J. 418:443-451. https://doi.org/10.1042/BJ20081478
  155. Zamocky, M., Furtmuller, P. G. and Obinger, C. 2008. Evolution of catalases from bacteria to humans. Antioxid. Redox Signal. 10:1527-1548. https://doi.org/10.1089/ars.2008.2046
  156. Zamocky, M., Furtmuller, P. G. and Obinger, C. 2009b. Two distinct groups of fungal catalase/peroxidases. Biochem. Soc. Trans. 37:772-777. https://doi.org/10.1042/BST0370772
  157. Zamocky, M., Gasselhuber, B., Furtmuller, P. G. and Obinger, C. 2012b. Molecular evolution of hydrogen peroxide degrading enzymes. Arch. Biochem. Biophys. 525:131-144. https://doi.org/10.1016/j.abb.2012.01.017
  158. Zarrinpar, A., Bhattacharyya, R. P., Nittler, M. P. and Lim, W. A. 2004. Sho1 and Pbs2 act as coscaffolds linking components in the yeast high osmolarity MAP kinase pathway. Mol. Cell 14:825-832. https://doi.org/10.1016/j.molcel.2004.06.011
  159. Zelko, I. N., Mariani, T. J. and Folz, R. J. 2002. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic. Biol. Med. 33:337-349. https://doi.org/10.1016/S0891-5849(02)00905-X
  160. Zhang, H., Shen, W., Zhang, D., Shen, X., Wang, F., Hsiang, T., Liu, J. and Li, G. 2021. The bZIP transcription factor LtAP1 modulates oxidative stress tolerance and virulence in the peach gummosis fungus Lasiodiplodia theobromae. Front. Microbiol. 12:741842.
  161. Zhang, Z., Henderson, C. and Gurr, S. J. 2004. Blumeria graminis secretes an extracellular catalase during infection of barley: potential role in suppression of host defence. Mol. Plant Pathol. 5:537-547.
  162. Zheng, D., Zhang, S., Zhou, X., Wang, C., Xiang, P., Zheng, Q. and Xu, J.-R. 2012. The FgHOG1 pathway regulates hyphal growth, stress responses, and plant infection in Fusarium graminearum. PLoS ONE 7:e49495.
  163. Zheng, P., Chen, L., Zhong, S., Wei, X., Zhao, Q., Pan, Q., Kang, Z. and Liu, J. 2020. A Cu-only superoxide dismutase from stripe rust fungi functions as a virulence factor deployed for counter defense against host-derived oxidative stress. Environ Microbiol. 22:5309-5326.
  164. Zipfel, C. 2009. Early molecular events in PAMP-triggered immunity. Curr. Opin. Plant Biol. 12:414-420. https://doi.org/10.1016/j.pbi.2009.06.003
  165. Zipfel, C. and Felix, G. 2005. Plants and animals: a different taste for microbes? Curr. Opin. Plant Biol. 8:353-360. https://doi.org/10.1016/j.pbi.2005.05.004