DOI QR코드

DOI QR Code

Effect of Ethanol Fractionation of Lignin on the Physicochemical Properties of Lignin-Based Polyurethane Film

  • Sungwook WON (Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University) ;
  • Junsik BANG (Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University) ;
  • Sang-Woo PARK (Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University) ;
  • Jungkyu KIM (Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University) ;
  • Minjung JUNG (Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University) ;
  • Seungoh JUNG (Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University) ;
  • Heecheol YUN (Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University) ;
  • Hwanmyeong YEO (Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University) ;
  • In-Gyu CHOI (Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University) ;
  • Hyo Won KWAK (Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University)
  • Received : 2023.12.29
  • Accepted : 2024.02.19
  • Published : 2024.05.25

Abstract

Lignin, a prominent constituent of woody biomass, is abundant in nature, cost-effective, and contains various functional groups, including hydroxyl groups. Owing to these characteristics, they have the potential to replace petroleum-based polyols in the polyurethane industry, offering a solution to environmental problems linked to resource depletion and CO2 emissions. However, the structural complexity and low reactivity of lignin present challenges for its direct application in polyurethane materials. In this study, Kraft lignin (KL), a representative technical lignin, was fractionated with ethanol, an eco-friendly solvent, and mixed with conventional polyols in varying proportions to produce polyurethane films. The results of ethanol fractionation showed that the polydispersity of ethanol-soluble lignin (ESL) decreased from 3.71 to 2.72 and the hydroxyl content of ESL increased from 4.20 mmol/g to 5.49 mmol/g. Consequently, the polyurethane prepared by adding ESL was superior to the KL-based film, exhibiting improved miscibility with petrochemical-based polyols and reactivity with isocyanate groups. Consequently, the films using ESL as the polyol exhibited reduced shrinkage and a more uniform structure. Optical microscope and scanning electron microscope observations confirmed that lignin aggregation was lower in polyurethane with ESL than in that with KL. When the hydrophobicity of the samples was measured using the water contact angle, the addition of ESL resulted in higher hydrophobicity. In addition, as the amount of ESL added increased, an increase of 7.4% in the residual char was observed, and a 4.04% increase in Tmax the thermal stability of the produced polyurethane was effectively improved.

Keywords

Acknowledgement

This study was carried out with the support of the 'R&D Program for Forest Science Technology (2020224 D10-2222-AC02)' provided by the Korea Forest Service (Korea Forestry Promotion Institute). This study was carried out with the support of the 'R&D Program for Forest Science Technology (2020215B10-2222-AC01)' provided by the Korea Forest Service (Korea Forestry Promotion Institute).

References

  1. Ajao, O., Jeaidi, J., Benali, M., Abdelaziz, O.Y., Hulteberg, C.P. 2019. Green solvents-based fractionation process for kraft lignin with controlled dispersity and molecular weight. Bioresource Technology 291: 121799.
  2. Akindoyo, J.O., Beg, M.D.H., Ghazali, S., Islam, M.R., Jeyaratnam, N., Yuvaraj, A.R. 2016. Polyurethane types, synthesis and applications: A review. RSC Advances 6(115): 114453-114482.
  3. Bang, J., Kim, J., Kim, Y., Oh, J.K., Yeo, H., Kwak, H.W. 2022. Preparation and characterization of hydrophobic coatings from carnauba wax/lignin blends. Journal of the Korean Wood Science and Technology 50(3): 149-158.
  4. Bang, J., Kim, J.H., Park, S.W., Kim, J., Jung, M., Jung, S., Kim, J.C., Choi, I.G., Kwak, H.W. 2023. Effect of chemically modified lignin addition on the physicochemical properties of PCL nanofibers. International Journal of Biological Macromolecules 240: 124330.
  5. Choi, J.H., Cho, S.M., Kim, J.C., Park, S.W., Cho, Y.M., Koo, B., Kwak, H.W., Choi, I.G. 2021. Thermal properties of ethanol organosolv lignin depending on its structure. ACS Omega 6(2): 1534-1546.
  6. Das, A., Mahanwar, P. 2020. A brief discussion on advances in polyurethane applications. Advanced Industrial and Engineering Polymer Research 3(3): 93-101.
  7. Ding, Z., Qiu, X., Fang, Z., Yang, D. 2018. Effect of molecular weight on the reactivity and dispersibility of sulfomethylated alkali lignin modified by horseradish peroxidase. ACS Sustainable Chemistry & Engineering 6(11): 14197-14202.
  8. Fatriasari, W., Nurhamzah, F., Raniya, R., Permana Budi Laksana, R., Anita, S.H., Iswanto, A.H., Hermiati, E. 2020. Enzymatic hydrolysis performance of biomass by the addition of a lignin based biosurfactant. Journal of the Korean Wood Science and Technology 48(5): 651-665.
  9. Figueiredo, P., Lintinen, K., Hirvonen, J.T., Kostiainen, M.A., Santos, H.A. 2018. Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications. Progress in Materials Science 93: 233-269.
  10. Gigli, M., Crestini, C. 2020. Fractionation of industrial lignins: Opportunities and challenges. Green Chemistry 22(15): 4722-4746.
  11. Haridevan, H., Evans, D.A.C., Martin, D.J., Annamalai, P.K. 2022. Rational analysis of dispersion and solubility of kraft lignin in polyols for polyurethanes. Industrial Crops and Products 185: 115129.
  12. Hasan, M.S., Sardar, M.R.I., Shafin, A.A., Rahman, M.S., Mahmud, M., Hossen, M.M. 2023. A brief review on applications of lignin. Journal of Chemical Reviews 5(1): 56-82.
  13. Hwang, U.T., Bae, J., Lee, T., Hwang, S.Y., Kim, J.C., Park, J., Choi, I.G., Kwak, H.W., Hwang, S.W., Yeo, H. 2021. Analysis of carbonization behavior of hydrochar produced by hydrothermal carbonization of lignin and development of a prediction model for carbonization degree using near-infrared spectroscopy. Journal of the Korean Wood Science and Technology 49(3): 213-225.
  14. Jaaskelainen, A.S., Liitia, T., Mikkelson, A., Tamminen, T. 2017. Aqueous organic solvent fractionation as means to improve lignin homogeneity and purity. Industrial Crops and Products 103: 51-58.
  15. Kang, K.K., Kim, S., Kim, I.H., Lee, C., Kim, B.H. 2013. Selective enrichment of symmetric monounsaturated triacylglycerols from palm stearin by double solvent fractionation. LWT-Food Science and Technology 51(1): 242-252.
  16. Kim, J., Bang, J., Park, S., Jung, M., Jung, S., Yun, H., Kim, J.H., Choi, I.G., Kwak, H.W. 2023a. Enhanced barrier properties of biodegradable PBAT/acetylated lignin films. Sustainable Materials and Technologies 37: e00686.
  17. Kim, J., Kim, Y., Jung, S., Yun, H., Yeo, H., Choi, I.G., Kwak, H.W. 2023b. Cationized lignin loaded alginate beads for efficient Cr(VI) removal. Journal of the Korean Wood Science and Technology 51(5): 321-333.
  18. Kim, J.I., Park, J.Y., Kong, Y.T., Lee, B.H., Kim, H.J., Roh, J.K. 2002. Performance on flame-retardant polyurethane coatings for wood and wood-based materials. Journal of the Korean Wood Science and Technology 30(2): 172-179.
  19. Kim, J.Y., Park, S.Y., Lee, J.H., Choi, I.G., Choi, J.W. 2017. Sequential solvent fractionation of lignin for selective production of monoaromatics by Ru catalyzed ethanolysis. RSC Advances 7(84): 53117-53125.
  20. Kim, K.H., Kim, J.Y., Kim, C.S., Choi, J.W. 2019. Pyrolysis of lignin obtained from cinnamyl alcohol dehydrogenase (CAD) downregulated Arabidopsis thaliana. Journal of the Korean Wood Science and Technology 47(4): 442-450.
  21. Kwak, H.W., Shin, M., Yun, H., Lee, K.H. 2016. Preparation of silk sericin/lignin blend beads for the removal of hexavalent chromium ions. International Journal of Molecular Sciences 17(9): 1466.
  22. Lee, H., Kim, S., Park, M.J. 2021a. Specific surface area characteristic analysis of porous carbon prepared from lignin-polyacrylonitrile copolymer by activation conditions. Journal of the Korean Wood Science and Technology 49(4): 299-314.
  23. Lee, I., Oh, W. 2023. Flexural modulus of larch boards laminated by adhesives with reinforcing material. Journal of the Korean Wood Science and Technology 51(1): 14-22.
  24. Lee, J.H., Kim, K., Jin, X., Kim, T.M., Choi, I.G., Choi, J.W. 2021b. Formation of pure nanoparticles with solvent-fractionated lignin polymers and evaluation of their biocompatibility. International Journal of Biological Macromolecules 183: 660-667.
  25. Li, H., Sun, J.T., Wang, C., Liu, S., Yuan, D., Zhou, X., Tan, J., Stubbs, L., He, C. 2017. High modulus, strength, and toughness polyurethane elastomer based on unmodified lignin. ACS Sustainable Chemistry & Engineering 5(9): 7942-7949.
  26. Novo-Uzal, E., Pomar, F., Gomez Ros, L.V., Espineira, J.M., Ros Barcelo, A. 2012. Evolutionary History of Lignins. In: Lignins: Biosynthesis, Biodegradation and Bioengineering, Ed. by Jouanin, L. and Lapierre, C. Academic Press, Cambridge, MA, USA. pp. 309-350.
  27. Pang, T., Wang, G., Sun, H., Sui, W., Si, C. 2021. Lignin fractionation: Effective strategy to reduce molecule weight dependent heterogeneity for upgraded lignin valorization. Industrial Crops and Products 165: 113442.
  28. Park, S., Kim, J., Choi, J.H., Kim, J.C., Kim, J., Cho, Y., Jung, S., Kwak, H.W., Choi, I.G. 2023. Biodegradation behavior of acetylated lignin added polylactic acid under thermophilic composting conditions. International Journal of Biological Macromolecules 253(Pt 7): 127472.
  29. Park, S.Y., Choi, J.H., Cho, S.M., Choi, J.W., Choi, I.G. 2020. Structural analysis of open-column fractionation of peracetic acid-treated kraft lignin. Journal of the Korean Wood Science and Technology 48(6): 769-779.
  30. Park, S.Y., Kim, J.Y., Youn, H.J., Choi, J.W. 2018. Fractionation of lignin macromolecules by sequential organic solvents systems and their characterization for further valuable applications. International Journal of Biological Macromolecules 106: 793-802.
  31. Ponnuchamy, V., Gordobil, O., Diaz, R.H., Sandak, A., Sandak, J. 2021. Fractionation of lignin using organic solvents: A combined experimental and theoretical study. International Journal of Biological Macromolecules 168: 792-805.
  32. Tekin, K., Hao, N., Karagoz, S., Ragauskas, A.J. 2018. Ethanol: A promising green solvent for the deconstruction of lignocellulose. ChemSusChem 11(20): 3559-3575.
  33. Wang, Y.Y., Wyman, C.E., Cai, C.M., Ragauskas, A.J. 2019. Lignin-based polyurethanes from unmodified kraft lignin fractionated by sequential precipitation. ACS Applied Polymer Materials 1(7): 1672-1679.
  34. Wang, Z., Yang, X., Zhou, Y., Liu, C. 2013. Mechanical and thermal properties of polyurethane films from peroxy-acid wheat straw lignin. BioResources 8(3): 3833-3843.
  35. Watumlawar, E.C., Park, B.D. 2023. Effects of precipitation pH of black liquor on characteristics of precipitated and acetone-fractionated kraft lignin. Journal of the Korean Wood Science and Technology 51(1): 38-48.
  36. Zendrato, H.M., Devi, Y.S., Masruchin, N., Wistara, N.J. 2021. Soda pulping of torch ginger stem: Promising source of nonwood-based cellulose. Journal of the Korean Wood Science and Technology 49(4): 287-298.